Transit Timing Variation and Transmission Spectroscopy Analyses of the Hot Neptune GJ3470b

  • Supachai Awiphan
Part of the Springer Theses book series (Springer Theses)


The transit method is one of the most effective detection method, detecting more than 2,700 exoplanets, including over 2,300 by Kepler (Morton et al., ApJ 822:86, 2016). The transit method can detect planets ranging in size from Earth to larger than Jupiter. The transit timing variation (TTV) method has been used to find at least 10 additional exoplanets and a hundred of candidates (Agol et al., MNRAS 359:567, 2005, Holman and Murray, Science 307:1288, 2005, Holman et al., Science 330:51, 2010, Ford et al., ApJ 750:113, 2012a, Ford et al., ApJ 756:185, 2012b, Fabrycky et al., ApJ 750:114, 2012, Steffen et al., MNRAS 421:2342, 2012a, Steffen et al. ApJ 756:186, 2012b, Steffen et al. MNRAS 428:1077, 2013, Mazeh et al., ApJS 208:16, 2013).


  1. Agol E, Deck K (2016) ApJ 818:177ADSCrossRefGoogle Scholar
  2. Agol E, Steffen J, Sari R, Clarkson W (2005) MNRAS 359:567ADSCrossRefGoogle Scholar
  3. Ahn CP, Alexandroff R, Allende Prieto C et al (2014) ApJS 211:17ADSCrossRefGoogle Scholar
  4. Awiphan S, Kerins E, Pichadee S et al (2016a) MNRAS 463:2574ADSCrossRefGoogle Scholar
  5. Ballard S, Fabrycky D, Fressin F et al (2011) ApJ 743:200ADSCrossRefGoogle Scholar
  6. Bean JL, Miller-Ricci Kempton E, Homeier D (2010a) Nature 468:669ADSCrossRefGoogle Scholar
  7. Bento J, Wheatley PJ, Copperwheat CM et al (2014) MNRAS 437:1511ADSCrossRefGoogle Scholar
  8. Biddle LI, Pearson KA, Crossfield IJM et al (2014) MNRAS 443:1810ADSCrossRefGoogle Scholar
  9. Bonfils X, Gillon M, Udry S et al (2012) A&A 546:A27ADSCrossRefGoogle Scholar
  10. Borucki WJ, Summers AL (1984) Icarus 58:121ADSCrossRefGoogle Scholar
  11. Boué G, Oshagh M, Montalto M, Santos NC (2012) MNRAS 422:57ADSCrossRefGoogle Scholar
  12. Brown TM (2001) ApJ 553:1006ADSCrossRefGoogle Scholar
  13. Carter JA, Agol E, Chaplin WJ et al (2012) Science 337:556ADSCrossRefGoogle Scholar
  14. Charbonneau D, Brown TM, Burrows A, Laughlin G (2007) Protostars and planets V, pp 701–716Google Scholar
  15. Claret A (2000) A&A 363:1081ADSGoogle Scholar
  16. Claret A, Bloemen S (2011) A&A 529:A75ADSCrossRefGoogle Scholar
  17. Coughlin JL, Mullally F, Thompson SE et al (2016) ApJS 224:12ADSCrossRefGoogle Scholar
  18. Crossfield IJM, Barman T, Hansen BMS, Howard AW (2013) A&A 559:A33ADSCrossRefGoogle Scholar
  19. Czesla S, Huber KF, Wolter U, Schröter S, Schmitt JHMM (2009) A&A 505:1277ADSCrossRefGoogle Scholar
  20. Da Costa GS (1992) In: Howell SB (ed) Astronomical CCD observing and reduction techniques. Astronomical Society of the Pacific Conference Series, vol 23, p 90Google Scholar
  21. Delfosse X, Forveille T, Ségransan D et al (2000) A&A 364:217ADSGoogle Scholar
  22. Demory B-O, Torres G, Neves V et al (2013) ApJ 768:154ADSCrossRefGoogle Scholar
  23. Dhillon VS, Marsh TR, Atkinson DC et al (2014) MNRAS 444:4009ADSCrossRefGoogle Scholar
  24. Dragomir D, Benneke B, Pearson KA et al (2015) ApJ 814:102ADSCrossRefGoogle Scholar
  25. Ehrenreich D, Bonfils X, Lovis C et al (2014) A&A 570:A89ADSCrossRefGoogle Scholar
  26. Fabrycky DC, Ford EB, Steffen JH et al (2012) ApJ 750:114ADSCrossRefGoogle Scholar
  27. Ford EB, Fabrycky DC, Steffen JH et al (2012a) ApJ 750:113ADSCrossRefGoogle Scholar
  28. Ford EB, Ragozzine D, Rowe JF et al (2012b) ApJ 756:185ADSCrossRefGoogle Scholar
  29. Fukui A, Narita N, Kurosaki K et al (2013) ApJ 770:95ADSCrossRefGoogle Scholar
  30. Gazak JZ, Johnson JA, Tonry J et al (2012) Advances in astronomy, 2012Google Scholar
  31. Grillmair CJ, Burrows A, Charbonneau D et al (2008) Nature 456:767ADSCrossRefGoogle Scholar
  32. Holman MJ, Murray NW (2005) Science 307:1288ADSCrossRefGoogle Scholar
  33. Holman MJ, Fabrycky DC, Ragozzine D et al (2010) Science 330:51ADSCrossRefGoogle Scholar
  34. Howard AW, Marcy GW, Bryson ST et al (2012) ApJS 201:15ADSCrossRefGoogle Scholar
  35. Howe AR, Burrows AS (2012) ApJ 756:176ADSCrossRefGoogle Scholar
  36. Howe AR, Burrows A, Verne W (2014) ApJ 787:173ADSCrossRefGoogle Scholar
  37. Hubbard WB, Fortney JJ, Lunine JI, Burrows A, Sudarsky D, Pinto P (2001) ApJ 560:413ADSCrossRefGoogle Scholar
  38. Hui L, Seager S (2002) ApJ 572:540ADSCrossRefGoogle Scholar
  39. Jontof-Hutter D, Lissauer JJ, Rowe JF, Fabrycky DC (2014) ApJ 785:15ADSCrossRefGoogle Scholar
  40. Jontof-Hutter D, Rowe JF, Lissauer JJ, Fabrycky DC, Ford EB (2015) Nature 522:321ADSCrossRefGoogle Scholar
  41. Knutson HA, Charbonneau D, Noyes RW, Brown TM, Gilliland RL (2007) ApJ 655:564ADSCrossRefGoogle Scholar
  42. Knutson HA, Benneke B, Deming D, Homeier D (2014) Nature 505:66ADSCrossRefGoogle Scholar
  43. Kreidberg L, Bean JL, Désert J-M et al (2014) Nature 505:69ADSCrossRefGoogle Scholar
  44. Lecavelier Des Etangs A, Pont F, Vidal-Madjar A, Sing D (2008) A&A 481:L83Google Scholar
  45. Lissauer JJ, Fabrycky DC, Ford EB et al (2011) Nature 470:53ADSCrossRefGoogle Scholar
  46. Lissauer JJ, Jontof-Hutter D, Rowe JF et al (2013) ApJ 770:131ADSCrossRefGoogle Scholar
  47. Lopez ED, Fortney JJ (2014) ApJ 792:1ADSCrossRefGoogle Scholar
  48. Mandel K, Agol E (2002) ApJ 580:L171ADSCrossRefGoogle Scholar
  49. Marcy GW, Weiss LM, Petigura EA, Isaacson H, Howard AW, Buchhave LA (2014) Proc Natl Acad Sci 111:12655ADSCrossRefGoogle Scholar
  50. Masuda K (2014) ApJ 783:53ADSCrossRefGoogle Scholar
  51. Mazeh T, Nachmani G, Holczer T et al (2013) ApJS 208:16ADSCrossRefGoogle Scholar
  52. Miller-Ricci E, Fortney JJ (2010) ApJ 716:L74ADSCrossRefGoogle Scholar
  53. Morton TD, Bryson ST, Coughlin JL et al (2016) ApJ 822:86ADSCrossRefGoogle Scholar
  54. Nascimbeni V, Piotto G, Pagano I, Scandariato G, Sani E, Fumana M (2013) A&A 559:A32ADSCrossRefGoogle Scholar
  55. Nesvorný D, Morbidelli A (2008) ApJ 688:636ADSCrossRefGoogle Scholar
  56. Perryman M, Hainaut O, Dravins D et al (2005). arXiv:0506.163
  57. Pineda JS, Bottom M, Johnson JA (2013) ApJ 767:28ADSCrossRefGoogle Scholar
  58. Piso A-MA, Youdin AN, Murray-Clay RA (2015) ApJ 800:82ADSCrossRefGoogle Scholar
  59. Rafikov RR (2011) ApJ 727:86ADSCrossRefGoogle Scholar
  60. Seager S, Deming D (2010) ARA&A 48:631ADSCrossRefGoogle Scholar
  61. Seager S, Mallén-Ornelas G (2003) ApJ 585:1038ADSCrossRefGoogle Scholar
  62. Seager S, Sasselov DD (2000) ApJ 537:916ADSCrossRefGoogle Scholar
  63. Silva AVR (2003) ApJ 585:L147ADSCrossRefGoogle Scholar
  64. Southworth J, Wheatley PJ, Sams G (2007) MNRAS 379:L11ADSCrossRefGoogle Scholar
  65. Steffen JH, Fabrycky DC, Ford EB et al (2012a) MNRAS 421:2342ADSCrossRefGoogle Scholar
  66. Steffen JH, Ford EB, Rowe JF et al (2012b) ApJ 756:186ADSCrossRefGoogle Scholar
  67. Steffen JH, Fabrycky DC, Agol E et al (2013) MNRAS 428:1077ADSCrossRefGoogle Scholar
  68. Swain MR, Vasisht G, Tinetti G (2008) Nature 452:329ADSCrossRefGoogle Scholar
  69. Swain MR, Deroo P, Griffith CA et al (2010) Nature 463:637ADSCrossRefGoogle Scholar
  70. Tingley B, Sackett PD (2005) ApJ 627:1011ADSCrossRefGoogle Scholar
  71. Veras D, Ford EB, Payne MJ (2011) ApJ 727:74ADSCrossRefGoogle Scholar
  72. Weiss LM, Marcy GW (2014) ApJ 783:L6ADSCrossRefGoogle Scholar
  73. Winn JN (2010). arXiv:1001.2010

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Astronomical Research Institute of ThailandChiang MaiThailand

Personalised recommendations