Skip to main content

Multiscale Dynamics of Damage-Failure Transitions and Structures Control Under Intensive Loading

  • Chapter
  • First Online:
Dynamics and Control of Advanced Structures and Machines
  • 417 Accesses

Abstract

High-cycle and very-high-cycle fatigue is the most important fundamental and engineering problem for a variety of applications. Series of accidents caused by the gas turbine engine failure (Cowles, Int J Fract 80:147–163, 1996; Shanyavsky, Simulation of fatigue fracture of metals. Synergetics in aviation. Monografiya, Ufa, 2007), along with high costs of service life estimation and potential costs of development of new constructions, stimulated advanced concepts of national programs for high-cycle and very-high-cycle fatigue (Bathias and Paris, Gigacycle fatigue in mechanical practice. Dekker Publisher Co., Marcel, 2005; Botvina, Fracture: kinetics, mechanisms, general laws. Nauka, Moscow, 2008; Hong et al., Metall Mater Trans A 43(8):2753–2762, 2012; Mughrabi, Int J Fatigue 28:1501–1508, 2006; Nicolas, Int J Fatigue 21:221–231, 1999; Nicholas, High cycle fatigue. A mechanics of material perspective. Elsevier, Oxford, 2006; Paris et al., Eng Fract Mech 75:299–305, 2008; Peters and Ritchie, Eng Fract Mech 67:193–207, 2000; Sakai, J Solid Mech Mater Eng 3(3):425–439, 2009; Shanyavsky, Simulation of fatigue fracture of metals. Synergetics in aviation. Monografiya, Ufa, 2007), as being based on new fundamental results of fatigue evaluation. The programs aim at developing approaches using basic research findings, modern methods of laboratory modeling, and quantitative analysis of structural changes in order to reveal fracture stages and “criticality” mechanisms in transition to macroscopic fracture. A strong interest in the gigacycle range (109 cycles) of fatigue loads is provided by the progress in the creation of new (nano- and submicrostructural) materials with a very-high-cycle fatigue life and by breakthrough tendencies in technologies requiring such life in aviation motor industry (Nicolas, Int J Fatigue 21:221–231, 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abaimov, S.G.: Statistical Physics of Non-thermal Phase Transitions (From Foundations to Applications). Series in Synergetics. Springer, Cham (2015)

    Google Scholar 

  2. Bannikov, M., Oborin, V., Naimark, O.: Experimental study of crack initiation and propagation in high- and gigacycle fatigue in titanium alloys. AIP Conf. Proc. 1623, 55 (2014)

    Google Scholar 

  3. Bannikov, M.V., Naimark, O.B., Oborin, V.A.: Experimental investigation of crack initiation and propagation in high- and gigacycle fatigue in titanium alloys by study of morphology of fracture. Frattura ed Integrità Strutturale 35, 50–56 (2016)

    Google Scholar 

  4. Barenblatt, G.I.: Scaling phenomena in fatigue and fracture. Int. J. Fract. 138, 19–35 (2006)

    Google Scholar 

  5. Bathias, C., Paris, P.C.: Gigacycle Fatigue in Mechanical Practice. Dekker Publisher Co., Marcel (2005)

    Google Scholar 

  6. Botvina, L.R.: Fracture: Kinetics, Mechanisms, General Laws. Nauka, Moscow (2008)

    Google Scholar 

  7. Bouchaud, E.: Scaling Properties of Cracks. J. Phys. Condens. Matter. 9, 4319–4344 (1997)

    Google Scholar 

  8. Ciavarella, M., Paggi, M., Carpinteri, A.: One, no one, and one hundred thousand crack propagation laws: a generalized Barenblatt and Botvina dimensional analysis approach to fatigue crack growth. J. Mech. Phys. Solids 56, 3416–3432 (2008)

    Google Scholar 

  9. Cowles, B.A.: High cycle fatigue in aircraft gas turbines—an industry perspective. Int. J. Fract. 80, 147–163 (1996)

    Google Scholar 

  10. Froustey, C., Naimark, O., Bannikov, M., Oborin, V.: Microstructure scaling properties and fatigue resistance of pre-strained aluminium alloys. Eur. J. Mech. A Solids 29, 1008–1014 (2010)

    Google Scholar 

  11. Hertzberg, R.W.: On the calculation of closure-free fatigue crack propagation data in monolithic metal alloys. Mater. Sci. Eng. A 190, 25–32 (1995)

    Google Scholar 

  12. Hong, Y., Zhao, A., Qian, G., Zhou, C.: Fatigue strength and crack: initiation mechanism of very-high-cycle fatigue for low alloy steels. Metall. Mater. Trans. A 43(8), 2753–2762 (2012)

    Google Scholar 

  13. Marines-Garcia, I., Paris, P.C., Tada, H., Bathias, C.: Fatigue crack growth from small to long cracks in VHCF with surface initiations. Int. J. Fatigue 29(9–11), 2072–2078 (2007)

    Google Scholar 

  14. Miller, K.J.: Materials science perspective of metal fatigue resistance. Mater. Sci. Tech. 9(6), 453–462 (1993)

    Google Scholar 

  15. Mughrabi, H.: Specific features and mechanisms of fatigue in the ultra-high-cycle regime. Int. J. Fatigue 28, 1501–1508 (2006)

    Google Scholar 

  16. Mughrabi, H.: Microstructural fatigue mechanisms: cyclic slip irreversibility, crack initiation, non-linear elastic damage analysis. Int. J. Fatigue 57, 2–8 (2013)

    Google Scholar 

  17. Mughrabi, H., Höppel, H.W.: Cyclic deformation and fatigue properties of very fine-grained metals and alloys. Int. J. Fatigue 32(9), 1413–1427 (2010)

    Google Scholar 

  18. Naimark, O.B., Bayandin, Yu.V., Leontiev, V.A., Panteleev, I.A., Plekhov, O.A.: Structural-scaling transitions and thermodynamic and kinetic effects in submicro-(nano-)crystalline bulk materials. Phys. Mesomech. 12(5–6), 239–248 (2009)

    Google Scholar 

  19. Nicholas, T.: High Cycle Fatigue. A Mechanics of Material Perspective. Elsevier, Oxford (2006)

    Google Scholar 

  20. Nicolas, T.: Critical issues in high cycle fatigue. Int. J. Fatigue 21, 221–231 (1999)

    Google Scholar 

  21. Oborin, V.A., Bannikov, M.V., Naimark, O.B., Palin-Luc, T.: Scaling invariance of fatigue crack growth in gigacycle loading regime. Tech. Phys. Lett. 36(11), 1061–1063 (2010)

    Google Scholar 

  22. Oborin, V., Bannikov, M., Naimark, O., Froustey, C.: Long-range-correlation large-scale interactions in ensembles of defects: estimating reliability of aluminium alloys under dynamic cycling and fatigue loading. Tech. Phys. Lett. 37(3), 241–243 (2011)

    Google Scholar 

  23. Paris, P.C., Lados, D., Tada, H.: Reflections on identifying the real ΔKeffective in the Threshold Region and Beyond. Eng. Fract. Mech. 75, 299–305 (2008)

    Google Scholar 

  24. Peters, J.O., Ritchie, R.O.: Influence of foreign-object damage on crack initiation and early crack growth during high-cycle fatigue of Ti-6Al-4V. Eng. Fract. Mech. 67, 193–207 (2000)

    Google Scholar 

  25. Sakai, T.: Review and prospects for current studies on high cycle fatigue of metallic materials for machine structural use. J. Solid Mech. Mater. Eng. 3(3), 425–439 (2009)

    Google Scholar 

  26. Shanyavsky, A.A.: Simulation of Fatigue Fracture of Metals. Synergetics in Aviation. Monografiya, Ufa (2007)

    Google Scholar 

Download references

Acknowledgement

Research was supported by the Russian Foundation of Basic Research (project n. 17-01-00687a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Naimark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naimark, O.B. (2019). Multiscale Dynamics of Damage-Failure Transitions and Structures Control Under Intensive Loading. In: Matveenko, V., Krommer, M., Belyaev, A., Irschik, H. (eds) Dynamics and Control of Advanced Structures and Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-90884-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90884-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90883-0

  • Online ISBN: 978-3-319-90884-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics