Abstract
The success of IVF-based assisted reproductive technologies (ART) depends critically on viability and sustained in utero development of the in vitro-grown embryo. Selection of that embryo for transfer involves a judgment on the part of the clinical embryologist. For a good part of the past nearly 40 years, this judgment has been based primarily on embryo appearance—or morphology—assessed at discreet time points during culture. Some key morphological markers of viability have been identified through a multitude of retrospective observational studies. Although obviously useful and serving an important function, morphology is subjective and does not always reveal development potential. Two emerging and evolving technologies hold the promise to complement morphology: preimplantation genetic testing for aneuploidy (PGT-A) and time-lapse microscopy (TLM) for continuous monitoring of embryo development and precise timing of key developmental events. Scrutiny of time-lapse images has helped successful identification of events associated with blastulation, but predicting implantation and pregnancy still proves to be a challenge. It is clear that, to be efficacious, embryo selection platforms and algorithms must be able to select for embryos with low risk of aneuploidy or, alternatively, reliably predict implantation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dhont M. Evidence-based reproductive medicine: a critical appraisal. Facts Views Vis Obgyn. 2013;5(3):233–40.
Campbell M, Fitzpatrick R, Haines A, Kinmonth AL, Sandercock P, Spiegelhalter D, Tyrer P. Framework for design and evaluation of complex interventions to improve health. BMJ. 2000;321(7262):694–6.
Cohen J, Alikani M. Evidence-based medicine and its application in clinical preimplantation embryology. Reprod Biomed Online. 2013;27(5):547–61. https://doi.org/10.1016/j.rbmo.2013.08.003.
Armstrong S, Vail A, Mastenbroek S, Jordan V, Farquhar C. Time-lapse in the IVF-lab: how should we assess potential benefit? Hum Reprod. 2015;30(1):3–8. https://doi.org/10.1093/humrep/deu250.
Racowsky C, Kovacs P, Martins WP. A critical appraisal of time-lapse imaging for embryo selection: where are we and where do we need to go? J Assist Reprod Genet. 2015;32(7):1025–30. https://doi.org/10.1007/s10815-015-0510-6.
Racowsky C, Martins WP. Effectiveness and safety of time-lapse imaging for embryo culture and selection: it is still too early for any conclusions? Fertil Steril. 2017;108(3):450–2. https://doi.org/10.1016/j.fertnstert.2017.07.1156.
Pribenszky C, Nilselid AM, Montag M. Time-lapse culture with morphokinetic embryo selection improves pregnancy and live birth chances and reduces early pregnancy loss: a meta-analysis. Reprod Biomed Online. 2017;35(5):511–20. https://doi.org/10.1016/j.rbmo.2017.06.022.
Alikani M, Fauser BCJM, Anderson R, García-Velasco JA, Johnson M. Response from the Editors: time-lapse systems for ART—meta-analyses and the issue of bias. Reprod BioMed Online. 2018;36(3):293. In press, corrected proof. Accessed 26 Dec 2017.
Insua MF, Cobo AC, Larreategui Z, Ferrando M, Serra V, Meseguer M. Obstetric and perinatal outcomes of pregnancies conceived with embryos cultured in a time-lapse monitoring system. Fertil Steril. 2017;108(3):498–504. https://doi.org/10.1016/j.fertnstert.2017.06.031.
Dolinko AV, Farland LV, Kaser DJ, Missmer SA, Racowsky C. National survey on use of time-lapse imaging systems in IVF laboratories. J Assist Reprod Genet. 2017;34(9):1167–72. https://doi.org/10.1007/s10815-017-0964-9.
Alpha Scientists in Reproductive Medicine, Embryology ESIGo. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26(6):1270–83. https://doi.org/10.1093/humrep/der037.
Racowsky C, Vernon M, Mayer J, Ball GD, Behr B, Pomeroy KO, Wininger D, Gibbons W, Conaghan J, Stern JE. Standardization of grading embryo morphology. Fertil Steril. 2010;94(3):1152–3. https://doi.org/10.1016/j.fertnstert.2010.05.042.
Ebner T, Maurer M, Shebl O, Moser M, Mayer RB, Duba HC, Tews G. Planar embryos have poor prognosis in terms of blastocyst formation and implantation. Reprod Biomed Online. 2012;25(3):267–72. https://doi.org/10.1016/j.rbmo.2012.05.007.
Wright G, Wiker S, Elsner C, Kort H, Massey J, Mitchell D, Toledo A, Cohen J. Observations on the morphology of pronuclei and nucleoli in human zygotes and implications for cryopreservation. Hum Reprod. 1990;5(1):109–15.
Scott LA, Smith S. The successful use of pronuclear embryo transfers the day following oocyte retrieval. Hum Reprod. 1998;13(4):1003–13.
Alikani M, Calderon G, Tomkin G, Garrisi J, Kokot M, Cohen J. Cleavage anomalies in early human embryos and survival after prolonged culture in-vitro. Hum Reprod. 2000;15(12):2634–43.
Lewis EI, Farhadifar R, Farland LV, Needleman DJ, Missmer SA, Racowsky C. Use of imaging software for assessment of the associations among zona pellucida thickness variation, assisted hatching, and implantation of day 3 embryos. J Assist Reprod Genet. 2017;34(10):1261–9. https://doi.org/10.1007/s10815-017-0978-3.
Huang D, Yin C, Leung M, Ahn H-J, Kosasa T, Kessel B, Huang TTF. Blastocyst expansion morphokinetics and aneuploidy in human preimplantation embryos (Abstract). Geneva: ESHRE; 2017.
Alikani M. Morphological expressions of human egg and embryo quality. In: Coward K, Wells D, editors. Testbook of clinical embryology. Cambridge: Cambridge University Press; 2013. p. 313–26.
Bradley CK, Traversa MV, Gee AJ, Hobson N, McArthur SJ. Clinical use of monopronucleated zygotes following blastocyst culture and preimplantation genetic screening, including verification of biparental chromosome inheritance. Reprod Biomed Online. 2017;34:567–74.
Yao G, Xu J, Xin Z, Niu W, Shi S, Jin H, Song W, Wang E, Yang Q, Chen L, Sun Y. Developmental potential of clinically discarded human embryos and associated chromosomal analysis. Sci Rep. 2016;6:23995. https://doi.org/10.1038/srep23995.
Bouillon C, Celton N, Kassem S, Frapsauce C, Guerif F. Obstetric and perinatal outcomes of singletons after single blastocyst transfer: is there any difference according to blastocyst morphology? Reprod Biomed Online. 2017;35(2):197–207. https://doi.org/10.1016/j.rbmo.2017.04.009.
Wirleitner B, Schuff M, Stecher A, Murtinger M, Vanderzwalmen P. Pregnancy and birth outcomes following fresh or vitrified embryo transfer according to blastocyst morphology and expansion stage, and culturing strategy for delayed development. Hum Reprod. 2016;31(8):1685–95. https://doi.org/10.1093/humrep/dew127.
Paternot G, Devroe J, Debrock S, D'Hooghe TM, Spiessens C. Intra- and inter-observer analysis in the morphological assessment of early-stage embryos. Reprod Biol Endocrinol. 2009;7:105. https://doi.org/10.1186/1477-7827-7-105.
Filho ES, Noble JA, Wells D. A review on automatic analysis of human embryo microscope images. Open Biomed Eng J. 2010;4:170–7. https://doi.org/10.2174/1874120701004010170.
Paternot G, Debrock S, De Neubourg D, D'Hooghe TM, Spiessens C. Semi-automated morphometric analysis of human embryos can reveal correlations between total embryo volume and clinical pregnancy. Hum Reprod. 2013;28(3):627–33. https://doi.org/10.1093/humrep/des427.
Lagalla C, Barberi M, Orlando G, Sciajno R, Bonu MA, Borini A. A quantitative approach to blastocyst quality evaluation: morphometric analysis and related IVF outcomes. J Assist Reprod Genet. 2015;32(5):705–12. https://doi.org/10.1007/s10815-015-0469-3.
Richter KS, Harris DC, Daneshmand ST, Shapiro BS. Quantitative grading of a human blastocyst: optimal inner cell mass size and shape. Fertil Steril. 2001;76:1157–67.
Ziebe S. Morphometric analysis of human embryos to predict developmental competence. Reprod Fertil Dev. 2013;26(1):55–64. https://doi.org/10.1071/RD13296.
Gleicher N, Orvieto R. Is the hypothesis of preimplantation genetic screening (PGS) still supportable? A review. J Ovarian Res. 2017;10(1):21. https://doi.org/10.1186/s13048-017-0318-3.
Forman EJ, Hong KH, Ferry KM, Tao X, Taylor D, Levy B, Treff NR, Scott RT Jr. In vitro fertilization with single euploid blastocyst transfer: a randomized controlled trial. Fertil Steril. 2013;100(1):100–7.e101. https://doi.org/10.1016/j.fertnstert.2013.02.056.
Forman EJ, Hong KH, Franasiak JM, Scott RT Jr. Obstetrical and neonatal outcomes from the BEST Trial: single embryo transfer with aneuploidy screening improves outcomes after in vitro fertilization without compromising delivery rates. Am J Obstet Gynecol. 2014;210(2):157.e151–156. https://doi.org/10.1016/j.ajog.2013.10.016.
Alfarawati S, Fragouli E, Colls P, Stevens J, Gutierrez-Mateo C, Schoolcraft WB, Katz-Jaffe MG, Wells D. The relationship between blastocyst morphology, chromosomal abnormality, and embryo gender. Fertil Steril. 2011;95(2):520–4. https://doi.org/10.1016/j.fertnstert.2010.04.003.
Minasi MG, Colasante A, Riccio T, Ruberti A, Casciani V, Scarselli F, Spinella F, Fiorentino F, Varricchio MT, Greco E. Correlation between aneuploidy, standard morphology evaluation and morphokinetic development in 1730 biopsied blastocysts: a consecutive case series study. Hum Reprod. 2016;31(10):2245–54. https://doi.org/10.1093/humrep/dew183.
Capalbo A, Rienzi L, Cimadomo D, Maggiulli R, Elliott T, Wright G, Nagy ZP, Ubaldi FM. Correlation between standard blastocyst morphology, euploidy and implantation: an observational study in two centers involving 956 screened blastocysts. Hum Reprod. 2014;29(6):1173–81. https://doi.org/10.1093/humrep/deu033.
Irani M, Reichman D, Robles A, Melnick A, Davis O, Zaninovic N, Xu K, Rosenwaks Z. Morphologic grading of euploid blastocysts influences implantation and ongoing pregnancy rates. Fertil Steril. 2017;107(3):664–70. https://doi.org/10.1016/j.fertnstert.2016.11.012.
Fragouli E, Alfarawati S, Spath K, Wells D. Morphological and cytogenetic assessment of cleavage and blastocyst stage embryos. Mol Hum Reprod. 2014;20(2):117–26. https://doi.org/10.1093/molehr/gat073.
Ahlstrom A, Westin C, Reismer E, Wikland M, Hardarson T. Trophectoderm morphology: an important parameter for predicting live birth after single blastocyst transfer. Hum Reprod. 2011;26(12):3289–96. https://doi.org/10.1093/humrep/der325.
Honnma H, Baba T, Sasaki M, Hashiba Y, Ohno H, Fukunaga T, et al. Trophectoderm morphology significantly affects the rates of ongoing pregnancy and miscarriage in frozen-thawed single-blastocyst transfer cycle in vitro fertilization. Fertil Steril. 2012;98(2):361–7. https://doi.org/10.1016/j.fertnstert.2012.05.014.
Ebner T, Tritscher K, Mayer RB, Oppelt P, Duba HC, Maurer M, Schappacher-Tilp G, Petek E, Shebl O. Quantitative and qualitative trophectoderm grading allows for prediction of live birth and gender. J Assist Reprod Genet. 2016;33(1):49–57. https://doi.org/10.1007/s10815-015-0609-9.
Gardner DK, Schoolcraft WB. A randomized trial of blastocyst culture and transfer in in-vitro fertilization: reply. Hum Reprod. 1999;14(6):1663A–1663.
Lemmen JG, Agerholm I, Ziebe S. Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod Biomed Online. 2008;17(3):385–91.
Pribenszky C, Losonczi E, Molnar M, Lang Z, Matyas S, Rajczy K, Molnar K, Kovacs P, Nagy P, Conceicao J, Vajta G. Prediction of in-vitro developmental competence of early cleavage-stage mouse embryos with compact time-lapse equipment. Reprod Biomed Online. 2010;20(3):371–9. https://doi.org/10.1016/j.rbmo.2009.12.007.
Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM, Reijo Pera RA. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol. 2010;28(10):1115–21. https://doi.org/10.1038/nbt.1686.
Conaghan J, Chen AA, Willman SP, Ivani K, Chenette PE, Boostanfar R, Baker VL, Adamson GD, Abusief ME, Gvakharia M, Loewke KE, Shen S. Improving embryo selection using a computer-automated time-lapse image analysis test plus day 3 morphology: results from a prospective multicenter trial. Fertil Steril. 2013;100(2):412–419.e415. https://doi.org/10.1016/j.fertnstert.2013.04.021.
VerMilyea MD, Tan L, Anthony JT, Conaghan J, Ivani K, Gvakharia M, Boostanfar R, Baker VL, Suraj V, Chen AA, Mainigi M, Coutifaris C, Shen S. Computer-automated time-lapse analysis results correlate with embryo implantation and clinical pregnancy: a blinded, multi-centre study. Reprod Biomed Online. 2014;29(6):729–36. https://doi.org/10.1016/j.rbmo.2014.09.005.
Diamond MP, Suraj V, Behnke EJ, Yang X, Angle MJ, Lambe-Steinmiller JC, Watterson R, Athayde Wirka K, Chen AA, Shen S. Using the Eeva test adjunctively to traditional day 3 morphology is informative for consistent embryo assessment within a panel of embryologists with diverse experience. J Assist Reprod Genet. 2015;32(1):61–8. https://doi.org/10.1007/s10815-014-0366-1.
Adamson GD, Abusief ME, Palao L, Witmer J, Palao LM, Gvakharia M. Improved implantation rates of day 3 embryo transfers with the use of an automated time-lapse-enabled test to aid in embryo selection. Fertil Steril. 2016;105(2):369–375.e366. https://doi.org/10.1016/j.fertnstert.2015.10.030.
Aparicio-Ruiz B, Basile N, Perez Albala S, Bronet F, Remohi J, Meseguer M. Automatic time-lapse instrument is superior to single-point morphology observation for selecting viable embryos: retrospective study in oocyte donation. Fertil Steril. 2016;106(6):1379–1385.e1310. https://doi.org/10.1016/j.fertnstert.2016.07.1117.
Kaser DJ, Farland LV, Missmer SA, Racowsky C. Prospective study of automated versus manual annotation of early time-lapse markers in the human preimplantation embryo. Hum Reprod. 2017;32(8):1604–11. https://doi.org/10.1093/humrep/dex229.
Kaser DJ, Bormann CL, Missmer SA, Farland LV, Ginsburg ES, Racowsky C. A pilot randomized controlled trial of day 3 single embryo transfer with adjunctive time-lapse selection versus day 5 single embryo transfer with or without adjunctive time-lapse selection. Hum Reprod. 2017;32(8):1598–603. https://doi.org/10.1093/humrep/dex231.
Cruz M, Gadea B, Garrido N, Pedersen KS, Martinez M, Perez-Cano I, Munoz M, Meseguer M. Embryo quality, blastocyst and ongoing pregnancy rates in oocyte donation patients whose embryos were monitored by time-lapse imaging. J Assist Reprod Genet. 2011;28(7):569–73. https://doi.org/10.1007/s10815-011-9549-1.
Meseguer M, Rubio I, Cruz M, Basile N, Marcos J, Requena A. Embryo incubation and selection in a time-lapse monitoring system improves pregnancy outcome compared with a standard incubator: a retrospective cohort study. Fertil Steril. 2012;98(6):1481–1489.e1410. https://doi.org/10.1016/j.fertnstert.2012.08.016.
Chavez SL, Loewke KE, Han J, Moussavi F, Colls P, Munne S, Behr B, Reijo Pera RA. Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat Commun. 2012;3:1251. https://doi.org/10.1038/ncomms2249.
Kirkegaard K, Kesmodel US, Hindkjaer JJ, Ingerslev HJ. Time-lapse parameters as predictors of blastocyst development and pregnancy outcome in embryos from good prognosis patients: a prospective cohort study. Hum Reprod. 2013;28(10):2643–51. https://doi.org/10.1093/humrep/det300.
Chamayou S, Patrizio P, Storaci G, Tomaselli V, Alecci C, Ragolia C, Crescenzo C, Guglielmino A. The use of morphokinetic parameters to select all embryos with full capacity to implant. J Assist Reprod Genet. 2013;30(5):703–10. https://doi.org/10.1007/s10815-013-9992-2.
Desai N, Ploskonka S, Goodman LR, Austin C, Goldberg J, Falcone T. Analysis of embryo morphokinetics, multinucleation and cleavage anomalies using continuous time-lapse monitoring in blastocyst transfer cycles. Reprod Biol Endocrinol. 2014;12:54. https://doi.org/10.1186/1477-7827-12-54.
Motato Y, de los Santos MJ, Escriba MJ, Ruiz BA, Remohi J, Meseguer M. Morphokinetic analysis and embryonic prediction for blastocyst formation through an integrated time-lapse system. Fertil Steril. 2016;105(2):376–384.e379. https://doi.org/10.1016/j.fertnstert.2015.11.001.
Kaser DJ, Racowsky C. Reply: clinical outcomes following selection of human preimplantation embryos with time-lapse monitoring: a systematic review. Hum Reprod Update. 2014;20(5):802–3. https://doi.org/10.1093/humupd/dmu045.
Montag M. Morphokinetics and embryo aneuploidy: has time come or not yet? Reprod Biomed Online. 2013;26(6):528–30. https://doi.org/10.1016/j.rbmo.2013.03.011.
Montag M, Toth B, Strowitzki T. New approaches to embryo selection. Reprod Biomed Online. 2013;27(5):539–46. https://doi.org/10.1016/j.rbmo.2013.05.013.
Gardner DK, Meseguer M, Rubio C, Treff NR. Diagnosis of human preimplantation embryo viability. Hum Reprod Update. 2015;21(6):727–47. https://doi.org/10.1093/humupd/dmu064.
Petersen BM, Boel M, Montag M, Gardner DK. Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on day 3. Hum Reprod. 2016;31(10):2231–44. https://doi.org/10.1093/humrep/dew188.
Rubio I, Galan A, Larreategui Z, Ayerdi F, Bellver J, Herrero J, Meseguer M. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril. 2014;102(5):1287–1294.e1285. https://doi.org/10.1016/j.fertnstert.2014.07.738.
Basile N, Vime P, Florensa M, Aparicio Ruiz B, Garcia Velasco JA, Remohi J, Meseguer M. The use of morphokinetics as a predictor of implantation: a multicentric study to define and validate an algorithm for embryo selection. Hum Reprod. 2015;30(2):276–83. https://doi.org/10.1093/humrep/deu331.
Liu Y, Chapple V, Feenan K, Roberts P, Matson P. Time-lapse deselection model for human day 3 in vitro fertilization embryos: the combination of qualitative and quantitative measures of embryo growth. Fertil Steril. 2016;105(3):656–662.e651. https://doi.org/10.1016/j.fertnstert.2015.11.003.
Barrie A, Homburg R, McDowell G, Brown J, Kingsland C, Troup S. Examining the efficacy of six published time-lapse imaging embryo selection algorithms to predict implantation to demonstrate the need for the development of specific, in-house morphokinetic selection algorithms. Fertil Steril. 2017;107(3):613–21. https://doi.org/10.1016/j.fertnstert.2016.11.014.
Freour T, Le Fleuter N, Lammers J, Splingart C, Reignier A, Barriere P. External validation of a time-lapse prediction model. Fertil Steril. 2015;103(4):917–22. https://doi.org/10.1016/j.fertnstert.2014.12.111.
Lagalla C, Tarozzi N, Sciajno R, Wells D, Di Santo M, Nadalini M, Distratis V, Borini A. Embryos with morphokinetic abnormalities may develop into euploid blastocysts. Reprod Biomed Online. 2017;34(2):137–46. https://doi.org/10.1016/j.rbmo.2016.11.008.
Barrie A, Homburg R, McDowell G, Brown J, Kingsland C, Troup S. Preliminary investigation of the prevalence and implantation potential of abnormal embryonic phenotypes assessed using time-lapse imaging. Reprod Biomed Online. 2017;34(5):455–62. https://doi.org/10.1016/j.rbmo.2017.02.011.
Athayde Wirka K, Chen AA, Conaghan J, Ivani K, Gvakharia M, Behr B, Suraj V, Tan L, Shen S. Atypical embryo phenotypes identified by time-lapse microscopy: high prevalence and association with embryo development. Fertil Steril. 2014;101(6):1637–1648.e1–5. https://doi.org/10.1016/j.fertnstert.2014.02.050.
Mumusoglu S, Yarali I, Bozdag G, Ozdemir P, Polat M, Sokmensuer LK, Yarali H. Time-lapse morphokinetic assessment has low to moderate ability to predict euploidy when patient- and ovarian stimulation-related factors are taken into account with the use of clustered data analysis. Fertil Steril. 2017;107(2):413–421.e414. https://doi.org/10.1016/j.fertnstert.2016.11.005.
Swain JE. Could time-lapse embryo imaging reduce the need for biopsy and PGS? J Assist Reprod Genet. 2013;30(8):1081–90. https://doi.org/10.1007/s10815-013-0048-4.
Kirkegaard K, Ahlstrom A, Ingerslev HJ, Hardarson T. Choosing the best embryo by time lapse versus standard morphology. Fertil Steril. 2015;103(2):323–32. https://doi.org/10.1016/j.fertnstert.2014.11.003.
Campbell A, Fishel S, Bowman N, Duffy S, Sedler M, Hickman CF. Modelling a risk classification of aneuploidy in human embryos using non-invasive morphokinetics. Reprod Biomed Online. 2013;26(5):477–85. https://doi.org/10.1016/j.rbmo.2013.02.006.
Campbell A, Fishel S, Bowman N, Duffy S, Sedler M, Thornton S. Retrospective analysis of outcomes after IVF using an aneuploidy risk model derived from time-lapse imaging without PGS. Reprod Biomed Online. 2013;27(2):140–6. https://doi.org/10.1016/j.rbmo.2013.04.013.
Rienzi L, Capalbo A, Stoppa M, Romano S, Maggiulli R, Albricci L, Scarica C, Farcomeni A, Vajta G, Ubaldi FM. No evidence of association between blastocyst aneuploidy and morphokinetic assessment in a selected population of poor-prognosis patients: a longitudinal cohort study. Reprod Biomed Online. 2015;30(1):57–66. https://doi.org/10.1016/j.rbmo.2014.09.012.
Kramer YG, Kofinas JD, Melzer K, Noyes N, McCaffrey C, Buldo-Licciardi J, McCulloh DH, Grifo JA. Assessing morphokinetic parameters via time lapse microscopy (TLM) to predict euploidy: are aneuploidy risk classification models universal? J Assist Reprod Genet. 2014;31(9):1231–42. https://doi.org/10.1007/s10815-014-0285-1.
Orr B, Godek KM, Compton D. Aneuploidy. Curr Biol. 2015;25(13):R538–42. https://doi.org/10.1016/j.cub.2015.05.010.
Santaguida S, Amon A. Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nat Rev Mol Cell Biol. 2015;16(8):473–85. https://doi.org/10.1038/nrm4025.
Sheltzer JM, Torres EM, Dunham MJ, Amon A. Transcriptional consequences of aneuploidy. Proc Natl Acad Sci U S A. 2012;109(31):12644–9. https://doi.org/10.1073/pnas.1209227109.
Tang Y-C, Williams BR, Siegel JJ, Amon A. The energy and proteotoxic stress-inducing compounds AICAR and 17-AAG antagonize proliferation in aneuploidy cells. Cell. 2011;144(4):499–512.
Torres EM, Williams BR, Amon A. Aneuploidy: cells losing their balance. Genetics. 2008;179(2):737–46. https://doi.org/10.1534/genetics.108.090878.
Torres EM, Williams BR, Tang YC, Amon A. Thoughts on aneuploidy. Cold Spring Harb Symp Quant Biol. 2010;75:445–51. https://doi.org/10.1101/sqb.2010.75.025.
Oromendia AB, Amon A. Aneuploidy: implications for protein homeostasis and disease. Dis Model Mech. 2014;7(1):15–20. https://doi.org/10.1242/dmm.013391.
Williams BR, Prabhu VR, Hunter KE, Glazier CM, Whittaker CA, Housman DE, Amon A. Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science. 2008;322(5902):703–9. https://doi.org/10.1126/science.1160058.
Munne S, Grifo J, Cohen J, Weier HU. Chromosome abnormalities in human arrested preimplantation embryos: a multiple-probe FISH study. Am J Hum Genet. 1994;55(1):150–9.
Nogales MDC, Bronet F, Basile N, Martinez EMM, et al. Type of chromosome abnormality affects embryo morphology dynamics. Fert Steril. 2017;107:229–35.
Huang D, Yin C, Leung M, Ahn H-J, Kosasa T, Kessel B, Huang TTF. Blastocyst expansion morphokinetics and aneuploidy in human preimplantation embryos (Abstract). Geneva: ESHRE; 2017.
Huang TT, Chinn K, Kosasa T, Ahn HJ, Kessel B. Morphokinetics of human blastocyst expansion in vitro. Reprod Biomed Online. 2016;33(6):659–67. https://doi.org/10.1016/j.rbmo.2016.08.020.
Niimura S. Time-lapse videomicrographic analyses of contractions in mouse blastocysts. J Reprod Dev. 2003;49(6):413–23.
Schimmel T, Cohen J, Saunders H, Alikani M. Laser-assisted zona pellucida thinning does not facilitate hatching and may disrupt the in vitro hatching process: a morphokinetic study in the mouse. Hum Reprod. 2014;29(12):2670–9. https://doi.org/10.1093/humrep/deu245.
Marcos J, Perez-Albala S, Mifsud A, Molla M, Landeras J, Meseguer M. Collapse of blastocysts is strongly related to lower implantation success: a time-lapse study. Hum Reprod. 2015;30(11):2501–8. https://doi.org/10.1093/humrep/dev216.
Cohen J, Simons RF, Edwards RG, Fehilly CB, Fishel SB. Pregnancies following the frozen storage of expanding human blastocysts. J In Vitro Fert Embryo Transf. 1985;2(2):59–64.
Cohen J, Simons RS, Fehilly CB, Edwards RG. Factors affecting survival and implantation of cryopreserved human embryos. J In Vitro Fert Embryo Transf. 1986;3(1):46–52.
Goodman LR, Goldberg J, Falcone T, Austin C, Desai N. Does the addition of time-lapse morphokinetics in the selection of embryos for transfer improve pregnancy rates? A randomized controlled trial. Fertil Steril. 2016;105(2):275–285.e210. https://doi.org/10.1016/j.fertnstert.2015.10.013.
Polanski LT, Coelho Neto MA, Nastri CO, Navarro PA, Ferriani RA, Raine-Fenning N, Martins WP. Time-lapse embryo imaging for improving reproductive outcomes: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2014;44(4):394–401. https://doi.org/10.1002/uog.13428.
Armstrong S, Arroll N, Cree LM, Jordan V, Farquhar C. Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane Database Syst Rev. 2015;(2). https://doi.org/10.1002/14651858.CD011320.pub2.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Huang, T., Alikani, M. (2018). Evidence-Based Approaches to Embryo Selection by Morphology and Kinetics. In: Carrell, D., Racowsky, C., Schlegel, P., DeCherney, A. (eds) Emerging Topics in Reproduction. Springer, Cham. https://doi.org/10.1007/978-3-319-90823-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-90823-6_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-90822-9
Online ISBN: 978-3-319-90823-6
eBook Packages: MedicineMedicine (R0)