Skip to main content

Regulation of Extracellular Adenosine

Part of the The Receptors book series (REC,volume 34)

Abstract

Adenosine receptor activation is determined by the availability of extracellular adenosine. The tissue concentration of extracellular adenosine in turn is determined by a combination of transmembrane transport through equilibrative and concentrative nucleoside transporters and intra- and extracellular metabolism. Metabolically, adenosine levels are kept in equilibrium by adenosine-producing reactions, which include ATP-degrading enzymes and S-adenosylhomocysteine hydrolase, and adenosine-consuming enzymes, which include adenosine deaminase and adenosine kinase. The equilibrium of extracellular adenosine is critical for health, but severely compromised in a wide range of pathologies. This chapter will outline key transport- and enzyme-based mechanisms that maintain extracellular adenosine homeostasis and discuss pathological implications of disrupted adenosine homeostasis. The chapter will conclude with considerations how lifestyle choices such as sleep, exercise, and diet can influence the availability of extracellular adenosine.

Keywords

  • Adenosine
  • ATP
  • Adenosine transporters
  • Adenosine metabolism
  • Adenosine homeostasis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-90808-3_2
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-90808-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

References

  • Alanko L, Heiskanen S, Stenberg D et al (2003) Adenosine kinase and 5′-nucleotidase activity after prolonged wakefulness in the cortex and the basal forebrain of rat. Neurochem Int 42:449–454

    PubMed  CrossRef  CAS  Google Scholar 

  • Allard B, Longhi MS, Robson SC et al (2017) The ectonucleotidases cd39 and cd73: novel checkpoint inhibitor targets. Immunol Rev 276:121–144

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Anderson CM, Xiong W, Geiger JD et al (1999) Distribution of equilibrative, nitrobenzylthioinosine-sensitive nucleoside transporters (ent1) in brain. J Neurochem 73:867–873

    PubMed  CrossRef  CAS  Google Scholar 

  • Andres CM, Fox IH (1979) Purification and properties of human placental adenosine kinase. J Biol Chem 254:11388–11393

    PubMed  CAS  Google Scholar 

  • Antonioli L, Blandizzi C, Pacher P et al (2013) Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer 13:842–857

    PubMed  CrossRef  CAS  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP et al (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    PubMed  CrossRef  CAS  Google Scholar 

  • Aronica E, Zurolo E, Iyer A et al (2011) Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy. Epilepsia 52:1645–1655

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Aronica E, Ravizza T, Zurolo E et al (2012) Astrocyte immune responses and epilepsy. Glia 60:1258–1268

    PubMed  CrossRef  Google Scholar 

  • Aronica E, Sandau US, Iyer A et al (2013) Glial adenosine kinase - a neuropathological marker of the epileptic brain. Neurochem Int 63:688–695

    PubMed  CrossRef  CAS  Google Scholar 

  • Arrigoni E, Rosenberg PA (2006) Nitric oxide-induced adenosine inhibition of hippocampal synaptic transmission depends on adenosine kinase inhibition and is cyclic gmp independent. Eur J Neurosci 24:2471–2480

    PubMed  CrossRef  Google Scholar 

  • Arrigoni E, Chamberlin NL, Saper CB et al (2006) Adenosine inhibits basal forebrain cholinergic and noncholinergic neurons in vitro. Neuroscience 140:403–413

    PubMed  CrossRef  CAS  Google Scholar 

  • Aymerich I, Duflot S, Fernandez-Veledo S et al (2005) The concentrative nucleoside transporter family (slc28): new roles beyond salvage? Biochem Soc Trans 33:216–219

    PubMed  CrossRef  CAS  Google Scholar 

  • Baldwin SA, Beal PR, Yao SY et al (2004) The equilibrative nucleoside transporter family, slc29. Pflugers Arch 447:735–743

    PubMed  CrossRef  CAS  Google Scholar 

  • Basheer R, Strecker RE, Thakkar MM et al (2004) Adenosine and sleep-wake regulation. Prog Neurobiol 73:379–396

    PubMed  CrossRef  CAS  Google Scholar 

  • Bjorness TE, Kelly CL, Gao T et al (2009) Control and function of the homeostatic sleep response by adenosine a1 receptors. J Neurosci 29:1267–1276

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Bjursell MK, Blom HJ, Cayuela JA et al (2011) Adenosine kinase deficiency disrupts the methionine cycle and causes hypermethioninemia, encephalopathy, and abnormal liver function. Am J Hum Genet 89:507–515

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Blackburn MR, Wakamiya M, Caskey CT et al (1995) Tissue-specific rescue suggests that placental adenosine deaminase is important for fetal development in mice. J Biol Chem 270:23891–23894

    PubMed  CrossRef  CAS  Google Scholar 

  • Blutstein T, Haydon PG (2012) The importance of astrocyte-derived purines in the modulation of sleep. Glia 61(2):129–139

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Boison D (2008) The adenosine kinase hypothesis of epileptogenesis. Prog Neurobiol 84:249–262

    PubMed  CrossRef  CAS  Google Scholar 

  • Boison D (2009) Adenosine augmentation therapies (aats) for epilepsy: Prospect of cell and gene therapies. Epilepsy Res 85:131–141

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Boison D (2010) Inhibitory rna in epilepsy: research tool and therapeutic perspectives. Epilepsia 51:1659–1668

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Boison D (2012a) Adenosine augmentation therapy for epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies. Oxford University Press, Oxford, pp 1150–1160

    CrossRef  Google Scholar 

  • Boison D (2012b) Adenosine dysfunction in epilepsy. Glia 60:1234–1243

    PubMed  CrossRef  Google Scholar 

  • Boison D (2013) Adenosine kinase: exploitation for therapeutic gain. Pharmacol Rev 65:906–943

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Boison D (2016) The biochemistry and epigenetics of epilepsy: focus on adenosine and glycine. Front Mol Neurosci 9:26

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Boison D, Aronica E (2015) Comorbidities in neurology: is adenosine the common link? Neuropharmacology 97:18–34

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Boison D, Scheurer L, Zumsteg V et al (2002) Neonatal hepatic steatosis by disruption of the adenosine kinase gene. Proc Natl Acad Sci U S A 99:6985–6990

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Boison D, Chen JF, Fredholm BB (2010) Adenosine signalling and function in glial cells. Cell Death Differ 17:1071–1082

    PubMed  CrossRef  CAS  Google Scholar 

  • Bontemps F, Van den Berghe G, Hers HG (1983) Evidence for a substrate cycle between amp and adenosine in isolated hepatocytes. Proc Natl Acad Sci U S A 80:2829–2833

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Bontemps F, Mimouni M, Van den Berghe G (1993a) Phosphorylation of adenosine in anoxic hepatocytes by an exchange reaction catalysed by adenosine kinase. Biochem J 290:679–684

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Bontemps F, Vincent MF, Van den Berge G (1993b) Mechanisms of elevation of adenosine levels in anoxic hepatocytes. Biochem J 290:671–677

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Boswell-Casteel RC, Hays FA (2017) Equilibrative nucleoside transporters-a review. Nucleosides Nucleotides Nucleic Acids 36:7–30

    PubMed  CrossRef  CAS  Google Scholar 

  • Bough K (2008) Energy metabolism as part of the anticonvulsant mechanism of the ketogenic diet. Epilepsia 49(Suppl 8):91–93

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bough KJ, Wetherington J, Hassel B et al (2006) Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol 60:223–235

    PubMed  CrossRef  CAS  Google Scholar 

  • Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    PubMed  CAS  Google Scholar 

  • Carrier EJ, Auchampach JA, Hillard CJ (2006) Inhibition of an equilibrative nucleoside transporter by cannabidiol: a mechanism of cannabinoid immunosuppression. Proc Natl Acad Sci U S A 103:7895–7900

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Cass CE, Young JD, Baldwin SA et al (1999) Nucleoside transporters of mammalian cells. Pharm Biotechnol 12:313–352

    PubMed  CrossRef  CAS  Google Scholar 

  • Chagoya de Sanchez V, Hernandez Munoz R, Suarez J et al (1993) Day-night variations of adenosine and its metabolizing enzymes in the brain cortex of the rat--possible physiological significance for the energetic homeostasis and the sleep-wake cycle. Brain Res 612:115–121

    PubMed  CrossRef  CAS  Google Scholar 

  • Chinsky JM, Ramamurthy V, Fanslow WC et al (1990) Developmental expression of adenosine deaminase in the upper alimentary tract of mice. Differentiation 42:172–183

    PubMed  CrossRef  CAS  Google Scholar 

  • Choi DS, Cascini MG, Mailliard W et al (2004) The type 1 equilibrative nucleoside transporter regulates ethanol intoxication and preference. Nat Neurosci 7:855–861

    PubMed  CrossRef  CAS  Google Scholar 

  • Costenla AR, Diogenes MJ, Canas PM et al (2011) Enhanced role of adenosine a(2a) receptors in the modulation of ltp in the rat hippocampus upon ageing. Eur J Neurosci 34:12–21

    PubMed  CrossRef  Google Scholar 

  • Cunha RA (2008) Different cellular sources and different roles of adenosine: a(1) receptor-mediated inhibition through astrocytic-driven volume transmission and synapse-restricted a(2a) receptor-mediated facilitation of plasticity. Neurochem Int 52:65–72

    PubMed  CrossRef  CAS  Google Scholar 

  • Cunha RA, Ferre S, Vaugeois JM et al (2008) Potential therapeutic interest of adenosine a(2a) receptors in psychiatric disorders. Curr Pharm Des 14:1512–1524

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • d’Alcantara P, Ledent C, Swillens S et al (2001) Inactivation of adenosine a2a receptor impairs long term potentiation in the accumbens nucleus without altering basal synaptic transmission. Neuroscience 107:455–464

    PubMed  CrossRef  Google Scholar 

  • Devinsky O, Cilio MR, Cross H et al (2014) Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia 55:791–802

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Dragunow M (1991) Adenosine and seizure termination. Ann Neurol 29:575

    PubMed  CrossRef  CAS  Google Scholar 

  • Driver HS, Taylor SR (2000) Exercise and sleep. Sleep Med Rev 4:387–402

    PubMed  CrossRef  Google Scholar 

  • Duarte JM, Agostinho PM, Carvalho RA et al (2012) Caffeine consumption prevents diabetes-induced memory impairment and synaptotoxicity in the hippocampus of NONcZNO10/LTJ mice. PLoS One 7:e21899

    Google Scholar 

  • Dulla CG, Dobelis P, Pearson T et al (2005) Adenosine and ATP link PCO2 to cortical excitability via pH. Neuron 48:1011–1023

    Google Scholar 

  • Dunwiddie TV (1980) Endogenously released adenosine regulates excitability in the in vitro hippocampus. Epilepsia 21:541–548

    PubMed  CrossRef  CAS  Google Scholar 

  • During MJ, Spencer DD (1992) Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol 32:618–624

    PubMed  CrossRef  CAS  Google Scholar 

  • Dworak M, Diel P, Voss S et al (2007) Intense exercise increases adenosine concentrations in rat brain: implications for a homeostatic sleep drive. Neuroscience 150:789–795

    PubMed  CrossRef  CAS  Google Scholar 

  • Etherington LA, Patterson GE, Meechan L et al (2009) Astrocytic adenosine kinase regulates basal synaptic adenosine levels and seizure activity but not activity-dependent adenosine release in the hippocampus. Neuropharmacology 56:429–437

    PubMed  CrossRef  CAS  Google Scholar 

  • Fedele DE, Koch P, Brüstle O et al (2004) Engineering embryonic stem cell derived glia for adenosine delivery. Neurosci Lett 370:160–165

    PubMed  CrossRef  CAS  Google Scholar 

  • Fedele DE, Gouder N, Güttinger M et al (2005) Astrogliosis in epilepsy leads to overexpression of adenosine kinase resulting in seizure aggravation. Brain 128:2383–2395

    PubMed  CrossRef  Google Scholar 

  • Felipe A, Valdes R, Santo B et al (1998) Na+−dependent nucleoside transport in liver: two different isoforms from the same gene family are expressed in liver cells. Biochem J 330(Pt 2):997–1001

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Finkelstein JD (1998) The metabolism of homocysteine: pathways and regulation. Eur J Pediatr 157(Suppl 2):S40–S44

    PubMed  CrossRef  CAS  Google Scholar 

  • Finkelstein JD, Martin JJ (1986) Methionine metabolism in mammals. Adaptation to methionine excess J Biol Chem 261:1582–1587

    PubMed  CAS  Google Scholar 

  • Franco R, Hoyle CH, Centelles JJ et al (1988) Degradation of adenosine by extracellular adenosine deaminase in the rat duodenum. Gen Pharmacol 19:679–681

    PubMed  CrossRef  CAS  Google Scholar 

  • Fredholm BB (2007) Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ 14:1315–1323

    CrossRef  CAS  PubMed  Google Scholar 

  • Fredholm BB, Lerner U (1982) Metabolism of adenosine and 2′-deoxy-adenosine by fetal mouse calvaria in culture. Med Biol 60:267–271

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Chen JF, Cunha RA et al (2005) Adenosine and brain function. Int Rev Neurobiol 63:191–270

    PubMed  CrossRef  CAS  Google Scholar 

  • Freeman JM (2009) Seizures, eeg events, and the ketogenic diet. Epilepsia 50:329–330

    PubMed  CrossRef  Google Scholar 

  • Frenguelli BG, Wigmore G, Llaudet E et al (2007) Temporal and mechanistic dissociation of atp and adenosine release during ischaemia in the mammalian hippocampus. J Neurochem 101:1400–1413

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Gao X, Blackburn MR, Knudsen TB (1994) Activation of apoptosis in early mouse embryos by 2′-deoxyadenosine exposure. Teratology 49:1–12

    PubMed  CrossRef  CAS  Google Scholar 

  • Geiger JD, Nagy JI (1986) Distribution of adenosine deaminase activity in rat brain and spinal cord. J Neurosci 6:2707–2714

    PubMed  CrossRef  CAS  PubMed Central  Google Scholar 

  • Geiger JD, Nagy JI (1987) Ontogenesis of adenosine deaminase activity in rat brain. J Neurochem 48:147–153

    PubMed  CrossRef  CAS  Google Scholar 

  • Godinho RO, Duarte T, Pacini ES (2015) New perspectives in signaling mediated by receptors coupled to stimulatory g protein: the emerging significance of camp efflux and extracellular camp-adenosine pathway. Front Pharmacol 6:58

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Gomes CV, Kaster MP, Tome AR et al (2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta 1808:1380–1399

    PubMed  CrossRef  CAS  Google Scholar 

  • Gouder N, Scheurer L, Fritschy J-M et al (2004) Overexpression of adenosine kinase in epileptic hippocampus contributes to epileptogenesis. J Neurosci 24:692–701

    PubMed  CrossRef  PubMed Central  CAS  Google Scholar 

  • Gray JH, Owen RP, Giacomini KM (2004) The concentrative nucleoside transporter family, slc28. Pflugers Arch 447:728–734

    PubMed  CrossRef  CAS  Google Scholar 

  • Guillen-Gomez E, Calbet M, Casado J et al (2004) Distribution of cnt2 and ent1 transcripts in rat brain: selective decrease of cnt2 mrna in the cerebral cortex of sleep-deprived rats. J Neurochem 90:883–893

    PubMed  CrossRef  CAS  Google Scholar 

  • Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Halassa MM, Florian C, Fellin T et al (2009) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61:213–219

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Hines DJ, Schmitt LI, Hines RM et al (2013) Antidepressant effects of sleep deprivation require astrocyte-dependent adenosine mediated signaling. Transl Psychiatry 3:e212

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Huber A, Padrun V, Deglon N et al (2001) Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy. Proc Natl Acad Sci U S A 98:7611–7616

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Huston JP, Haas HL, Boix F et al (1996) Extracellular adenosine levels in neostriatum and hippocampus during rest and activity periods of rats. Neuroscience 73:99–107

    PubMed  CrossRef  CAS  Google Scholar 

  • Jennings LL, Hao C, Cabrita MA et al (2001) Distinct regional distribution of human equilibrative nucleoside transporter proteins 1 and 2 (hent1 and hent2) in the central nervous system. Neuropharmacology 40:722–731

    PubMed  CrossRef  CAS  Google Scholar 

  • Jensen FE (2011) Epilepsy as a spectrum disorder: implications from novel clinical and basic neuroscience. Epilepsia 52(Suppl 1):1–6

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jensen CJ, Massie A, De Keyser J (2013) Immune players in the cns: the astrocyte. J Neuroimmune Pharmacol 8:824–839

    PubMed  CrossRef  Google Scholar 

  • Kalapos MP (2007) Possible mechanism for the effect of ketogenic diet in cases of uncontrolled seizures. The reconsideration of acetone theory Med Hypotheses 68:1382–1388

    PubMed  CrossRef  CAS  Google Scholar 

  • Kalinchuk AV, Urrila AS, Alanko L et al (2003) Local energy depletion in the basal forebrain increases sleep. Eur J Neurosci 17:863–869

    PubMed  CrossRef  Google Scholar 

  • Klein P, Dingledine R, Aronica E et al (2018) Commonalities in epileptogenic processes from different acute brain insults: Do they translate? Epilepsia (2018) 59:37–66

    Google Scholar 

  • Knudsen TB, Winters RS, Otey SK et al (1992) Effects of (r)-deoxycoformycin (pentostatin) on intrauterine nucleoside catabolism and embryo viability in the pregnant mouse. Teratology 45:91–103

    PubMed  CrossRef  CAS  Google Scholar 

  • Kobow K, Blumcke I (2011) The methylation hypothesis: do epigenetic chromatin modifications play a role in epileptogenesis? Epilepsia 52(Suppl 4):15–19

    PubMed  CrossRef  CAS  Google Scholar 

  • Kobow K, Blumcke I (2012) The emerging role of DNA methylation in epileptogenesis. Epilepsia 53(Suppl 9):11–20

    PubMed  CrossRef  CAS  Google Scholar 

  • Kobow K, Auvin S, Jensen F et al (2012) Finding a better drug for epilepsy: Antiepileptogenesis targets. Epilepsia 53:1868–1876

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Kobow K, Kaspi A, Harikrishnan KN et al (2013) Deep sequencing reveals increased DNA methylation in chronic rat epilepsy. Acta Neuropathol 126:741–756

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Kossoff EH, Rho JM (2009) Ketogenic diets: evidence for short- and long-term efficacy. Neurotherapeutics 6:406–414

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Kossoff EH, Zupec-Kania BA, Rho JM (2009) Ketogenic diets: an update for child neurologists. J Child Neurol 24:979–988

    PubMed  CrossRef  Google Scholar 

  • Kowaluk EA, Jarvis MF (2000) Therapeutic potential of adenosine kinase inhibitors. Expert Opin Investig Drugs 9:551–564

    PubMed  CrossRef  CAS  Google Scholar 

  • Kowaluk EA, Bhagwat SS, Jarvis MF (1998) Adenosine kinase inhibitors. Curr Pharm Des 4:403–416

    PubMed  CAS  Google Scholar 

  • Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484

    PubMed  CrossRef  CAS  Google Scholar 

  • Lee Y, Messing A, Su M et al (2008) Gfap promoter elements required for region-specific and astrocyte-specific expression. Glia 56:481–493

    PubMed  CrossRef  Google Scholar 

  • Li T, Steinbeck JA, Lusardi T et al (2007) Suppression of kindling epileptogenesis by adenosine releasing stem cell-derived brain implants. Brain 130:1276–1288

    PubMed  CrossRef  Google Scholar 

  • Li T, Ren G, Lusardi T et al (2008) Adenosine kinase is a target for the prediction and prevention of epileptogenesis in mice. J Clin Inv 118:571–582

    CrossRef  CAS  Google Scholar 

  • Li T, Lytle N, Lan J-Q et al (2012) Local disruption of glial adenosine homeostasis in mice associates with focal electrographic seizures: a first step in epileptogenesis? Glia 60:83–95

    PubMed  CrossRef  Google Scholar 

  • Lin Y, Phillis JW (1992) Deoxycoformycin and oxypurinol: protection against focal ischemic brain injury in the rat. Brain Res 571:272–280

    PubMed  CrossRef  CAS  Google Scholar 

  • Lucas M, Mirzaei F, Pan A et al (2011) Coffee, caffeine, and risk of depression among women. Arch Intern Med 171:1571–1578

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lucin KM, Wyss-Coray T (2009) Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 64:110–122

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Lusardi TA, Akula KK, Coffman SQ et al (2015) Ketogenic diet prevents epileptogenesis and disease progression in adult mice and rats. Neuropharmacology 99:500–509

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Ma W, Berg J, Yellen G (2007) Ketogenic diet metabolites reduce firing in central neurons by opening k(atp) channels. J Neurosci 27:3618–3625

    PubMed  CrossRef  CAS  PubMed Central  Google Scholar 

  • Mackiewicz M, Nikonova EV, Zimmerman JE et al (2003) Enzymes of adenosine metabolism in the brain: diurnal rhythm and the effect of sleep deprivation. J Neurochem 85:348–357

    PubMed  CrossRef  CAS  Google Scholar 

  • Major PP, Agarwal RP, Kufe DW (1981) Clinical pharmacology of deoxycoformycin. Blood 58:91–96

    PubMed  CAS  Google Scholar 

  • Masino SA, Geiger JD (2008) Are purines mediators of the anticonvulsant/neuroprotective effects of ketogenic diets? Trends Neurosci 31:273–278

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Masino SA, Geiger JD (2009) The ketogenic diet and epilepsy: is adenosine the missing link? Epilepsia 50:332–333

    PubMed  CrossRef  Google Scholar 

  • Masino SA, Kawamura M, Wasser CA et al (2009) Adenosine, ketogenic diet and epilepsy: the emerging therapeutic relationship between metabolism and brain activity. Curr Neuropharmacol 7:257–268

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Masino SA, Li T, Theofilas P et al (2011) A ketogenic diet suppresses seizures in mice through adenosine a1 receptors. J Clin Inv 121:2679–2683

    CrossRef  CAS  Google Scholar 

  • Masino SA, Kawamura M, Ruskin DN et al (2012) Purines and neuronal excitability: links to the ketogenic diet. Epilepsy Res 100:229–238

    PubMed  CrossRef  CAS  Google Scholar 

  • Matos M, Augusto E, Machado NJ et al (2012a) Astrocytic adenosine a2a receptors control the amyloid-beta peptide-induced decrease of glutamate uptake. J Alzheimers Dis 31:555–567

    PubMed  CrossRef  CAS  Google Scholar 

  • Matos M, Augusto E, Santos-Rodrigues AD et al (2012b) Adenosine a2a receptors modulate glutamate uptake in cultured astrocytes and gliosomes. Glia 60:702–716

    PubMed  CrossRef  Google Scholar 

  • Matos M, Shen H-Y, Augusto E et al (2015) Deletion of adenosine a2a receptors from astrocytes disrupts glutamate homeostasis leading to psychomotor and cognitive impairment: relevance to schizophrenia. Biol Psychiatry 78:763–774

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Matyash M, Zabiegalov O, Wendt S et al (2017) The adenosine generating enzymes cd39/cd73 control microglial processes ramification in the mouse brain. PLoS One 12:e0175012

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Mazzotti DR, Guindalini C, Pellegrino R et al (2011) Effects of the adenosine deaminase polymorphism and caffeine intake on sleep parameters in a large population sample. Sleep 34:399–402

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mazzotti DR, Guindalini C, de Souza AA et al (2012) Adenosine deaminase polymorphism affects sleep eeg spectral power in a large epidemiological sample. PLoS One 7:e44154

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • McGaraughty S, Cowart M, Jarvis MF (2001) Recent developments in the discovery of novel adenosine kinase inhibitors: mechanism of action and therapeutic potential. CNS Drug Rev 7:415–432

    PubMed  CrossRef  CAS  PubMed Central  Google Scholar 

  • McGaraughty S, Cowart M, Jarvis MF et al (2005) Anticonvulsant and antinociceptive actions of novel adenosine kinase inhibitors. Curr Top Med Chem 5:43–58

    PubMed  CrossRef  CAS  Google Scholar 

  • Miller AA, Spencer SJ (2014) Obesity and neuroinflammation: a pathway to cognitive impairment. Brain Behav Immun 42:10–21

    PubMed  CrossRef  CAS  Google Scholar 

  • Miller-Delaney SF, Bryan K, Das S et al (2015) Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy. Brain 138:616–631

    PubMed  CrossRef  Google Scholar 

  • Moffatt BA, Stevens YY, Allen MS et al (2002) Adenosine kinase deficiency is associated with developmental abnormalities and reduced transmethylation. Plant Physiol 128:812–821

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Mohamedali KA, Guicherit OM, Kellems RE et al (1993) The highest levels of purine catabolic enzymes in mice are present in the proximal small intestine. J Biol Chem 268:23728–23733

    PubMed  CAS  Google Scholar 

  • Molina-Arcas M, Casado FJ, Pastor-Anglada M (2009) Nucleoside transporter proteins. Curr Vasc Pharmacol 7:426–434

    PubMed  CrossRef  CAS  Google Scholar 

  • Neal EG, Chaffe H, Schwartz RH et al (2008) The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol 7:500–506

    PubMed  CrossRef  Google Scholar 

  • Nilsen KE, Cock HR (2004) Focal treatment for refractory epilepsy: hope for the future? Brain Res Brain Res Rev 44:141–153

    PubMed  CrossRef  Google Scholar 

  • Noebels J (2011) A perfect storm: converging paths of epilepsy and alzheimer’s dementia intersect in the hippocampal formation. Epilepsia 52(Suppl 1):39–46

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • O’Connor PJ, Youngstedt SD (1995) Influence of exercise on human sleep. Exerc Sport Sci Rev 23:105–134

    PubMed  Google Scholar 

  • Oro J (1961) Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive earth conditions. Nature 191:1193–1194

    PubMed  CrossRef  CAS  Google Scholar 

  • Pak MA, Haas HL, Decking UKM et al (1994) Inhibition of adenosine kinase increases endogenous adenosine and depresses neuronal activity in hippocampal slices. Neuropharmacology 33:1049–1053

    PubMed  CrossRef  CAS  Google Scholar 

  • Palchykova S, Winsky-Sommerer R, Shen H-Y et al (2010) Manipulation of adenosine kinase affects sleep regulation in mice. J Neurosci 30:13157–13165

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Park J, Gupta RS (2008) Adenosine kinase and ribokinase - the rk family of proteins. Cell Mol Life Sci 65:2875–2896

    PubMed  CrossRef  CAS  Google Scholar 

  • Parkinson FE, Damaraju VL, Graham K et al (2011) Molecular biology of nucleoside transporters and their distributions and functions in the brain. Curr Top Med Chem 11:948–972

    PubMed  CrossRef  CAS  Google Scholar 

  • Pascual O, Casper KB, Kubera C et al (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116

    PubMed  CrossRef  CAS  Google Scholar 

  • Pennycooke M, Chaudary N, Shuralyova I et al (2001) Differential expression of human nucleoside transporters in normal and tumor tissue. Biochem Biophys Res Commun 280:951–959

    PubMed  CrossRef  CAS  Google Scholar 

  • Perry VH (2012) Innate inflammation in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009373

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Phillis JW, O’Regan MH (1989) Deoxycoformycin antagonizes ischemia-induced neuronal degeneration. Brain Res Bull 22:537–540

    PubMed  CrossRef  CAS  Google Scholar 

  • Porkka-Heiskanen T, Kalinchuk AV (2011) Adenosine, energy metabolism and sleep homeostasis. Sleep Med Rev 15:123–135

    PubMed  CrossRef  Google Scholar 

  • Porkka-Heiskanen T, Strecker RE, Thakkar M et al (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276:1265–1268

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Rainnie DG, Grunze HCR, McCarley RW et al (1994) Adenosine inhibition of mesopontine cholinergic neurons: implications for eeg arousal. Science 263:689–692

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Ramadan A, Naydenova Z, Stevanovic K et al (2014) The adenosine transporter, ent1, in cardiomyocytes is sensitive to inhibition by ethanol in a kinase-dependent manner: implications for ethanol-dependent cardioprotection and nucleoside analog drug cytotoxicity. Purinergic Signal 10:305–312

    PubMed  CrossRef  CAS  Google Scholar 

  • Ravizza T, Kostoula C, Vezzani A (2013) Immunity activation in brain cells in epilepsy: mechanistic insights and pathological consequences. Neuropediatrics 44:330–335

    PubMed  CrossRef  CAS  Google Scholar 

  • Rebola N, Lujan R, Cunha RA et al (2008) Adenosine a2a receptors are essential for long-term potentiation of nmda-epscs at hippocampal mossy fiber synapses. Neuron 57:121–134

    PubMed  CrossRef  CAS  Google Scholar 

  • Retey JV, Adam M, Honegger E et al (2005) A functional genetic variation of adenosine deaminase affects the duration and intensity of deep sleep in humans. Proc Natl Acad Sci U S A 102:15676–15681

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Senba E, Daddona PE, Nagy JI (1987) Transient expression of adenosine deaminase in facial and hypoglossal motoneurons of the rat during development. J Comp Neurol 255:217–230

    PubMed  CrossRef  CAS  Google Scholar 

  • Shaw PJ, Cirelli C, Greenspan RJ et al (2000) Correlates of sleep and waking in drosophila melanogaster. Science 287:1834–1837

    PubMed  CrossRef  CAS  Google Scholar 

  • Shen HY, Singer P, Lytle N et al (2012) Adenosine augmentation ameliorates psychotic and cognitive endophenotypes of schizophrenia. J Clin Invest 122:2567–2577

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Silva CG, Porciuncula LO, Canas PM et al (2007) Blockade of adenosine a(2a) receptors prevents staurosporine-induced apoptosis of rat hippocampal neurons. Neurobiol Dis 27:182–189

    PubMed  CrossRef  CAS  Google Scholar 

  • Smith CM, Henderson JF (1982) Deoxyadenosine triphosphate accumulation in erythrocytes of deoxycoformycin-treated mice. Biochem Pharmacol 31:1545–1551

    PubMed  CrossRef  CAS  Google Scholar 

  • Soler C, Felipe A, Mata JF et al (1998) Regulation of nucleoside transport by lipopolysaccharide, phorbol esters, and tumor necrosis factor-alpha in human b-lymphocytes. J Biol Chem 273:26939–26945

    PubMed  CrossRef  CAS  Google Scholar 

  • Spychala J, Datta NS, Takabayashi K et al (1996) Cloning of human adenosine kinase cdna: sequence similarity to microbial ribokinases and fructokinases. Proc Natl Acad Sci U S A 93:1232–1237

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Stanimirovic DB, Friedman A (2012) Pathophysiology of the neurovascular unit: disease cause or consequence? J Cereb Blood Flow Metab 32:1207–1221

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Studer FE, Fedele DE, Marowsky A et al (2006) Shift of adenosine kinase expression from neurons to astrocytes during postnatal development suggests dual functionality of the enzyme. Neuroscience 142:125–137

    PubMed  CrossRef  CAS  Google Scholar 

  • Suvisaari J, Mantere O (2013) Inflammation theories in psychotic disorders: a critical review. Infect Disord Drug Targets 13:59–70

    PubMed  CrossRef  CAS  Google Scholar 

  • Swann JW, Rho JM (2014) How is homeostatic plasticity important in epilepsy? Adv Exp Med Biol 813:123–131

    PubMed  CrossRef  Google Scholar 

  • Szybala C, Pritchard EM, Wilz A et al (2009) Antiepileptic effects of silk-polymer based adenosine release in kindled rats. Exp Neurol 219:126–135

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Theofilas P, Brar S, Stewart K-A et al (2011) Adenosine kinase as a target for therapeutic antisense strategies in epilepsy. Epilepsia 52:589–601

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ugarkar BG, Castellino AJ, DaRe JM et al (2000a) Adenosine kinase inhibitors. 2. Synthesis, enzyme inhibition, and antiseizure activity of diaryltubercidin analogues. J Med Chem 43:2894–2905

    PubMed  CrossRef  CAS  Google Scholar 

  • Ugarkar BG, DaRe JM, Kopcho JJ et al (2000b) Adenosine kinase inhibitors. 1. Synthesis, enzyme inhibition, and antiseizure activity of 5-iodotubercidin analogues. J Med Chem 43:2883–2893

    PubMed  CrossRef  CAS  Google Scholar 

  • Valdes R, Ortega MA, Casado FJ et al (2000) Nutritional regulation of nucleoside transporter expression in rat small intestine. Gastroenterology 119:1623–1630

    PubMed  CrossRef  CAS  Google Scholar 

  • Virus RM, Djuricic-Nedelson M, Radulovacki M et al (1983) The effects of adenosine and 2′-deoxycoformycin on sleep and wakefulness in rats. Neuropharmacology 22:1401–1404

    PubMed  CrossRef  CAS  Google Scholar 

  • Williams-Karnesky RL, Sandau US, Lusardi TA et al (2013) Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J Clin Inv 123:3552–3563

    CrossRef  CAS  Google Scholar 

  • Yee BK, Singer P, Chen JF et al (2007) Transgenic overexpression of adenosine kinase in brain leads to multiple learning impairments and altered sensitivity to psychomimetic drugs. Eur J Neurosci 26:3237–3252

    PubMed  CrossRef  Google Scholar 

  • Yellen G (2008) Ketone bodies, glycolysis, and katp channels in the mechanism of the ketogenic diet. Epilepsia 49(Suppl 8):80–82

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Young JD, Yao SY, Baldwin JM et al (2013) The human concentrative and equilibrative nucleoside transporter families, slc28 and slc29. Mol Asp Med 34:529–547

    CrossRef  CAS  Google Scholar 

  • Zhang G, Franklin PH, Murray TF (1993) Manipulation of endogenous adenosine in the rat prepiriform cortex modulates seizure susceptibility. J Pharmacol Exp Ther 264:1415–1424

    PubMed  CAS  Google Scholar 

  • Zhou FW, Roper SN (2012) Impaired hippocampal memory function and synaptic plasticity in experimental cortical dysplasia. Epilepsia 53:850–859

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlev Boison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Boison, D. (2018). Regulation of Extracellular Adenosine. In: Borea, P., Varani, K., Gessi, S., Merighi, S., Vincenzi, F. (eds) The Adenosine Receptors. The Receptors, vol 34. Humana Press, Cham. https://doi.org/10.1007/978-3-319-90808-3_2

Download citation