Advertisement

Regulation of Extracellular Adenosine

  • Detlev BoisonEmail author
Chapter
Part of the The Receptors book series (REC, volume 34)

Abstract

Adenosine receptor activation is determined by the availability of extracellular adenosine. The tissue concentration of extracellular adenosine in turn is determined by a combination of transmembrane transport through equilibrative and concentrative nucleoside transporters and intra- and extracellular metabolism. Metabolically, adenosine levels are kept in equilibrium by adenosine-producing reactions, which include ATP-degrading enzymes and S-adenosylhomocysteine hydrolase, and adenosine-consuming enzymes, which include adenosine deaminase and adenosine kinase. The equilibrium of extracellular adenosine is critical for health, but severely compromised in a wide range of pathologies. This chapter will outline key transport- and enzyme-based mechanisms that maintain extracellular adenosine homeostasis and discuss pathological implications of disrupted adenosine homeostasis. The chapter will conclude with considerations how lifestyle choices such as sleep, exercise, and diet can influence the availability of extracellular adenosine.

Keywords

Adenosine ATP Adenosine transporters Adenosine metabolism Adenosine homeostasis 

References

  1. Alanko L, Heiskanen S, Stenberg D et al (2003) Adenosine kinase and 5′-nucleotidase activity after prolonged wakefulness in the cortex and the basal forebrain of rat. Neurochem Int 42:449–454PubMedCrossRefGoogle Scholar
  2. Allard B, Longhi MS, Robson SC et al (2017) The ectonucleotidases cd39 and cd73: novel checkpoint inhibitor targets. Immunol Rev 276:121–144PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anderson CM, Xiong W, Geiger JD et al (1999) Distribution of equilibrative, nitrobenzylthioinosine-sensitive nucleoside transporters (ent1) in brain. J Neurochem 73:867–873PubMedCrossRefGoogle Scholar
  4. Andres CM, Fox IH (1979) Purification and properties of human placental adenosine kinase. J Biol Chem 254:11388–11393PubMedGoogle Scholar
  5. Antonioli L, Blandizzi C, Pacher P et al (2013) Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer 13:842–857PubMedCrossRefGoogle Scholar
  6. Araque A, Parpura V, Sanzgiri RP et al (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215PubMedCrossRefPubMedCentralGoogle Scholar
  7. Aronica E, Zurolo E, Iyer A et al (2011) Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy. Epilepsia 52:1645–1655PubMedPubMedCentralCrossRefGoogle Scholar
  8. Aronica E, Ravizza T, Zurolo E et al (2012) Astrocyte immune responses and epilepsy. Glia 60:1258–1268PubMedCrossRefGoogle Scholar
  9. Aronica E, Sandau US, Iyer A et al (2013) Glial adenosine kinase - a neuropathological marker of the epileptic brain. Neurochem Int 63:688–695PubMedCrossRefGoogle Scholar
  10. Arrigoni E, Rosenberg PA (2006) Nitric oxide-induced adenosine inhibition of hippocampal synaptic transmission depends on adenosine kinase inhibition and is cyclic gmp independent. Eur J Neurosci 24:2471–2480PubMedCrossRefGoogle Scholar
  11. Arrigoni E, Chamberlin NL, Saper CB et al (2006) Adenosine inhibits basal forebrain cholinergic and noncholinergic neurons in vitro. Neuroscience 140:403–413PubMedCrossRefGoogle Scholar
  12. Aymerich I, Duflot S, Fernandez-Veledo S et al (2005) The concentrative nucleoside transporter family (slc28): new roles beyond salvage? Biochem Soc Trans 33:216–219PubMedCrossRefGoogle Scholar
  13. Baldwin SA, Beal PR, Yao SY et al (2004) The equilibrative nucleoside transporter family, slc29. Pflugers Arch 447:735–743PubMedCrossRefGoogle Scholar
  14. Basheer R, Strecker RE, Thakkar MM et al (2004) Adenosine and sleep-wake regulation. Prog Neurobiol 73:379–396PubMedCrossRefGoogle Scholar
  15. Bjorness TE, Kelly CL, Gao T et al (2009) Control and function of the homeostatic sleep response by adenosine a1 receptors. J Neurosci 29:1267–1276PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bjursell MK, Blom HJ, Cayuela JA et al (2011) Adenosine kinase deficiency disrupts the methionine cycle and causes hypermethioninemia, encephalopathy, and abnormal liver function. Am J Hum Genet 89:507–515PubMedPubMedCentralCrossRefGoogle Scholar
  17. Blackburn MR, Wakamiya M, Caskey CT et al (1995) Tissue-specific rescue suggests that placental adenosine deaminase is important for fetal development in mice. J Biol Chem 270:23891–23894PubMedCrossRefGoogle Scholar
  18. Blutstein T, Haydon PG (2012) The importance of astrocyte-derived purines in the modulation of sleep. Glia 61(2):129–139PubMedPubMedCentralCrossRefGoogle Scholar
  19. Boison D (2008) The adenosine kinase hypothesis of epileptogenesis. Prog Neurobiol 84:249–262PubMedCrossRefPubMedCentralGoogle Scholar
  20. Boison D (2009) Adenosine augmentation therapies (aats) for epilepsy: Prospect of cell and gene therapies. Epilepsy Res 85:131–141PubMedPubMedCentralCrossRefGoogle Scholar
  21. Boison D (2010) Inhibitory rna in epilepsy: research tool and therapeutic perspectives. Epilepsia 51:1659–1668PubMedPubMedCentralCrossRefGoogle Scholar
  22. Boison D (2012a) Adenosine augmentation therapy for epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies. Oxford University Press, Oxford, pp 1150–1160CrossRefGoogle Scholar
  23. Boison D (2012b) Adenosine dysfunction in epilepsy. Glia 60:1234–1243PubMedCrossRefGoogle Scholar
  24. Boison D (2013) Adenosine kinase: exploitation for therapeutic gain. Pharmacol Rev 65:906–943PubMedPubMedCentralCrossRefGoogle Scholar
  25. Boison D (2016) The biochemistry and epigenetics of epilepsy: focus on adenosine and glycine. Front Mol Neurosci 9:26PubMedPubMedCentralCrossRefGoogle Scholar
  26. Boison D, Aronica E (2015) Comorbidities in neurology: is adenosine the common link? Neuropharmacology 97:18–34PubMedPubMedCentralCrossRefGoogle Scholar
  27. Boison D, Scheurer L, Zumsteg V et al (2002) Neonatal hepatic steatosis by disruption of the adenosine kinase gene. Proc Natl Acad Sci U S A 99:6985–6990PubMedPubMedCentralCrossRefGoogle Scholar
  28. Boison D, Chen JF, Fredholm BB (2010) Adenosine signalling and function in glial cells. Cell Death Differ 17:1071–1082PubMedCrossRefPubMedCentralGoogle Scholar
  29. Bontemps F, Van den Berghe G, Hers HG (1983) Evidence for a substrate cycle between amp and adenosine in isolated hepatocytes. Proc Natl Acad Sci U S A 80:2829–2833PubMedPubMedCentralCrossRefGoogle Scholar
  30. Bontemps F, Mimouni M, Van den Berghe G (1993a) Phosphorylation of adenosine in anoxic hepatocytes by an exchange reaction catalysed by adenosine kinase. Biochem J 290:679–684PubMedPubMedCentralCrossRefGoogle Scholar
  31. Bontemps F, Vincent MF, Van den Berge G (1993b) Mechanisms of elevation of adenosine levels in anoxic hepatocytes. Biochem J 290:671–677PubMedPubMedCentralCrossRefGoogle Scholar
  32. Boswell-Casteel RC, Hays FA (2017) Equilibrative nucleoside transporters-a review. Nucleosides Nucleotides Nucleic Acids 36:7–30PubMedCrossRefGoogle Scholar
  33. Bough K (2008) Energy metabolism as part of the anticonvulsant mechanism of the ketogenic diet. Epilepsia 49(Suppl 8):91–93PubMedPubMedCentralCrossRefGoogle Scholar
  34. Bough KJ, Wetherington J, Hassel B et al (2006) Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol 60:223–235PubMedCrossRefGoogle Scholar
  35. Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581PubMedGoogle Scholar
  36. Carrier EJ, Auchampach JA, Hillard CJ (2006) Inhibition of an equilibrative nucleoside transporter by cannabidiol: a mechanism of cannabinoid immunosuppression. Proc Natl Acad Sci U S A 103:7895–7900PubMedPubMedCentralCrossRefGoogle Scholar
  37. Cass CE, Young JD, Baldwin SA et al (1999) Nucleoside transporters of mammalian cells. Pharm Biotechnol 12:313–352PubMedCrossRefPubMedCentralGoogle Scholar
  38. Chagoya de Sanchez V, Hernandez Munoz R, Suarez J et al (1993) Day-night variations of adenosine and its metabolizing enzymes in the brain cortex of the rat--possible physiological significance for the energetic homeostasis and the sleep-wake cycle. Brain Res 612:115–121PubMedCrossRefPubMedCentralGoogle Scholar
  39. Chinsky JM, Ramamurthy V, Fanslow WC et al (1990) Developmental expression of adenosine deaminase in the upper alimentary tract of mice. Differentiation 42:172–183PubMedCrossRefPubMedCentralGoogle Scholar
  40. Choi DS, Cascini MG, Mailliard W et al (2004) The type 1 equilibrative nucleoside transporter regulates ethanol intoxication and preference. Nat Neurosci 7:855–861PubMedCrossRefGoogle Scholar
  41. Costenla AR, Diogenes MJ, Canas PM et al (2011) Enhanced role of adenosine a(2a) receptors in the modulation of ltp in the rat hippocampus upon ageing. Eur J Neurosci 34:12–21PubMedCrossRefGoogle Scholar
  42. Cunha RA (2008) Different cellular sources and different roles of adenosine: a(1) receptor-mediated inhibition through astrocytic-driven volume transmission and synapse-restricted a(2a) receptor-mediated facilitation of plasticity. Neurochem Int 52:65–72PubMedCrossRefGoogle Scholar
  43. Cunha RA, Ferre S, Vaugeois JM et al (2008) Potential therapeutic interest of adenosine a(2a) receptors in psychiatric disorders. Curr Pharm Des 14:1512–1524PubMedPubMedCentralCrossRefGoogle Scholar
  44. d’Alcantara P, Ledent C, Swillens S et al (2001) Inactivation of adenosine a2a receptor impairs long term potentiation in the accumbens nucleus without altering basal synaptic transmission. Neuroscience 107:455–464PubMedCrossRefGoogle Scholar
  45. Devinsky O, Cilio MR, Cross H et al (2014) Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia 55:791–802PubMedPubMedCentralCrossRefGoogle Scholar
  46. Dragunow M (1991) Adenosine and seizure termination. Ann Neurol 29:575PubMedCrossRefGoogle Scholar
  47. Driver HS, Taylor SR (2000) Exercise and sleep. Sleep Med Rev 4:387–402PubMedCrossRefGoogle Scholar
  48. Duarte JM, Agostinho PM, Carvalho RA et al (2012) Caffeine consumption prevents diabetes-induced memory impairment and synaptotoxicity in the hippocampus of NONcZNO10/LTJ mice. PLoS One 7:e21899Google Scholar
  49. Dulla CG, Dobelis P, Pearson T et al (2005) Adenosine and ATP link PCO2 to cortical excitability via pH. Neuron 48:1011–1023Google Scholar
  50. Dunwiddie TV (1980) Endogenously released adenosine regulates excitability in the in vitro hippocampus. Epilepsia 21:541–548PubMedCrossRefPubMedCentralGoogle Scholar
  51. During MJ, Spencer DD (1992) Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol 32:618–624PubMedCrossRefPubMedCentralGoogle Scholar
  52. Dworak M, Diel P, Voss S et al (2007) Intense exercise increases adenosine concentrations in rat brain: implications for a homeostatic sleep drive. Neuroscience 150:789–795PubMedCrossRefGoogle Scholar
  53. Etherington LA, Patterson GE, Meechan L et al (2009) Astrocytic adenosine kinase regulates basal synaptic adenosine levels and seizure activity but not activity-dependent adenosine release in the hippocampus. Neuropharmacology 56:429–437PubMedCrossRefPubMedCentralGoogle Scholar
  54. Fedele DE, Koch P, Brüstle O et al (2004) Engineering embryonic stem cell derived glia for adenosine delivery. Neurosci Lett 370:160–165PubMedCrossRefGoogle Scholar
  55. Fedele DE, Gouder N, Güttinger M et al (2005) Astrogliosis in epilepsy leads to overexpression of adenosine kinase resulting in seizure aggravation. Brain 128:2383–2395PubMedCrossRefGoogle Scholar
  56. Felipe A, Valdes R, Santo B et al (1998) Na+−dependent nucleoside transport in liver: two different isoforms from the same gene family are expressed in liver cells. Biochem J 330(Pt 2):997–1001PubMedPubMedCentralCrossRefGoogle Scholar
  57. Finkelstein JD (1998) The metabolism of homocysteine: pathways and regulation. Eur J Pediatr 157(Suppl 2):S40–S44PubMedCrossRefGoogle Scholar
  58. Finkelstein JD, Martin JJ (1986) Methionine metabolism in mammals. Adaptation to methionine excess J Biol Chem 261:1582–1587PubMedGoogle Scholar
  59. Franco R, Hoyle CH, Centelles JJ et al (1988) Degradation of adenosine by extracellular adenosine deaminase in the rat duodenum. Gen Pharmacol 19:679–681PubMedCrossRefGoogle Scholar
  60. Fredholm BB (2007) Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ 14:1315–1323CrossRefPubMedGoogle Scholar
  61. Fredholm BB, Lerner U (1982) Metabolism of adenosine and 2′-deoxy-adenosine by fetal mouse calvaria in culture. Med Biol 60:267–271PubMedGoogle Scholar
  62. Fredholm BB, Chen JF, Cunha RA et al (2005) Adenosine and brain function. Int Rev Neurobiol 63:191–270PubMedCrossRefGoogle Scholar
  63. Freeman JM (2009) Seizures, eeg events, and the ketogenic diet. Epilepsia 50:329–330PubMedCrossRefGoogle Scholar
  64. Frenguelli BG, Wigmore G, Llaudet E et al (2007) Temporal and mechanistic dissociation of atp and adenosine release during ischaemia in the mammalian hippocampus. J Neurochem 101:1400–1413PubMedPubMedCentralCrossRefGoogle Scholar
  65. Gao X, Blackburn MR, Knudsen TB (1994) Activation of apoptosis in early mouse embryos by 2′-deoxyadenosine exposure. Teratology 49:1–12PubMedCrossRefGoogle Scholar
  66. Geiger JD, Nagy JI (1986) Distribution of adenosine deaminase activity in rat brain and spinal cord. J Neurosci 6:2707–2714PubMedCrossRefGoogle Scholar
  67. Geiger JD, Nagy JI (1987) Ontogenesis of adenosine deaminase activity in rat brain. J Neurochem 48:147–153PubMedCrossRefGoogle Scholar
  68. Godinho RO, Duarte T, Pacini ES (2015) New perspectives in signaling mediated by receptors coupled to stimulatory g protein: the emerging significance of camp efflux and extracellular camp-adenosine pathway. Front Pharmacol 6:58PubMedPubMedCentralCrossRefGoogle Scholar
  69. Gomes CV, Kaster MP, Tome AR et al (2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta 1808:1380–1399PubMedCrossRefGoogle Scholar
  70. Gouder N, Scheurer L, Fritschy J-M et al (2004) Overexpression of adenosine kinase in epileptic hippocampus contributes to epileptogenesis. J Neurosci 24:692–701PubMedCrossRefPubMedCentralGoogle Scholar
  71. Gray JH, Owen RP, Giacomini KM (2004) The concentrative nucleoside transporter family, slc28. Pflugers Arch 447:728–734PubMedCrossRefGoogle Scholar
  72. Guillen-Gomez E, Calbet M, Casado J et al (2004) Distribution of cnt2 and ent1 transcripts in rat brain: selective decrease of cnt2 mrna in the cerebral cortex of sleep-deprived rats. J Neurochem 90:883–893PubMedCrossRefGoogle Scholar
  73. Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355PubMedPubMedCentralCrossRefGoogle Scholar
  74. Halassa MM, Florian C, Fellin T et al (2009) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61:213–219PubMedPubMedCentralCrossRefGoogle Scholar
  75. Hines DJ, Schmitt LI, Hines RM et al (2013) Antidepressant effects of sleep deprivation require astrocyte-dependent adenosine mediated signaling. Transl Psychiatry 3:e212PubMedPubMedCentralCrossRefGoogle Scholar
  76. Huber A, Padrun V, Deglon N et al (2001) Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy. Proc Natl Acad Sci U S A 98:7611–7616PubMedPubMedCentralCrossRefGoogle Scholar
  77. Huston JP, Haas HL, Boix F et al (1996) Extracellular adenosine levels in neostriatum and hippocampus during rest and activity periods of rats. Neuroscience 73:99–107PubMedCrossRefGoogle Scholar
  78. Jennings LL, Hao C, Cabrita MA et al (2001) Distinct regional distribution of human equilibrative nucleoside transporter proteins 1 and 2 (hent1 and hent2) in the central nervous system. Neuropharmacology 40:722–731PubMedCrossRefGoogle Scholar
  79. Jensen FE (2011) Epilepsy as a spectrum disorder: implications from novel clinical and basic neuroscience. Epilepsia 52(Suppl 1):1–6PubMedPubMedCentralCrossRefGoogle Scholar
  80. Jensen CJ, Massie A, De Keyser J (2013) Immune players in the cns: the astrocyte. J Neuroimmune Pharmacol 8:824–839PubMedCrossRefGoogle Scholar
  81. Kalapos MP (2007) Possible mechanism for the effect of ketogenic diet in cases of uncontrolled seizures. The reconsideration of acetone theory Med Hypotheses 68:1382–1388PubMedCrossRefGoogle Scholar
  82. Kalinchuk AV, Urrila AS, Alanko L et al (2003) Local energy depletion in the basal forebrain increases sleep. Eur J Neurosci 17:863–869PubMedCrossRefGoogle Scholar
  83. Klein P, Dingledine R, Aronica E et al (2018) Commonalities in epileptogenic processes from different acute brain insults: Do they translate? Epilepsia (2018) 59:37–66Google Scholar
  84. Knudsen TB, Winters RS, Otey SK et al (1992) Effects of (r)-deoxycoformycin (pentostatin) on intrauterine nucleoside catabolism and embryo viability in the pregnant mouse. Teratology 45:91–103PubMedCrossRefGoogle Scholar
  85. Kobow K, Blumcke I (2011) The methylation hypothesis: do epigenetic chromatin modifications play a role in epileptogenesis? Epilepsia 52(Suppl 4):15–19PubMedCrossRefGoogle Scholar
  86. Kobow K, Blumcke I (2012) The emerging role of DNA methylation in epileptogenesis. Epilepsia 53(Suppl 9):11–20PubMedCrossRefGoogle Scholar
  87. Kobow K, Auvin S, Jensen F et al (2012) Finding a better drug for epilepsy: Antiepileptogenesis targets. Epilepsia 53:1868–1876PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kobow K, Kaspi A, Harikrishnan KN et al (2013) Deep sequencing reveals increased DNA methylation in chronic rat epilepsy. Acta Neuropathol 126:741–756PubMedPubMedCentralCrossRefGoogle Scholar
  89. Kossoff EH, Rho JM (2009) Ketogenic diets: evidence for short- and long-term efficacy. Neurotherapeutics 6:406–414PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kossoff EH, Zupec-Kania BA, Rho JM (2009) Ketogenic diets: an update for child neurologists. J Child Neurol 24:979–988PubMedCrossRefGoogle Scholar
  91. Kowaluk EA, Jarvis MF (2000) Therapeutic potential of adenosine kinase inhibitors. Expert Opin Investig Drugs 9:551–564PubMedCrossRefGoogle Scholar
  92. Kowaluk EA, Bhagwat SS, Jarvis MF (1998) Adenosine kinase inhibitors. Curr Pharm Des 4:403–416PubMedGoogle Scholar
  93. Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484PubMedCrossRefPubMedCentralGoogle Scholar
  94. Lee Y, Messing A, Su M et al (2008) Gfap promoter elements required for region-specific and astrocyte-specific expression. Glia 56:481–493PubMedCrossRefGoogle Scholar
  95. Li T, Steinbeck JA, Lusardi T et al (2007) Suppression of kindling epileptogenesis by adenosine releasing stem cell-derived brain implants. Brain 130:1276–1288PubMedCrossRefPubMedCentralGoogle Scholar
  96. Li T, Ren G, Lusardi T et al (2008) Adenosine kinase is a target for the prediction and prevention of epileptogenesis in mice. J Clin Inv 118:571–582CrossRefGoogle Scholar
  97. Li T, Lytle N, Lan J-Q et al (2012) Local disruption of glial adenosine homeostasis in mice associates with focal electrographic seizures: a first step in epileptogenesis? Glia 60:83–95PubMedCrossRefPubMedCentralGoogle Scholar
  98. Lin Y, Phillis JW (1992) Deoxycoformycin and oxypurinol: protection against focal ischemic brain injury in the rat. Brain Res 571:272–280PubMedCrossRefGoogle Scholar
  99. Lucas M, Mirzaei F, Pan A et al (2011) Coffee, caffeine, and risk of depression among women. Arch Intern Med 171:1571–1578PubMedPubMedCentralCrossRefGoogle Scholar
  100. Lucin KM, Wyss-Coray T (2009) Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 64:110–122PubMedPubMedCentralCrossRefGoogle Scholar
  101. Lusardi TA, Akula KK, Coffman SQ et al (2015) Ketogenic diet prevents epileptogenesis and disease progression in adult mice and rats. Neuropharmacology 99:500–509PubMedPubMedCentralCrossRefGoogle Scholar
  102. Ma W, Berg J, Yellen G (2007) Ketogenic diet metabolites reduce firing in central neurons by opening k(atp) channels. J Neurosci 27:3618–3625PubMedCrossRefGoogle Scholar
  103. Mackiewicz M, Nikonova EV, Zimmerman JE et al (2003) Enzymes of adenosine metabolism in the brain: diurnal rhythm and the effect of sleep deprivation. J Neurochem 85:348–357PubMedCrossRefGoogle Scholar
  104. Major PP, Agarwal RP, Kufe DW (1981) Clinical pharmacology of deoxycoformycin. Blood 58:91–96PubMedGoogle Scholar
  105. Masino SA, Geiger JD (2008) Are purines mediators of the anticonvulsant/neuroprotective effects of ketogenic diets? Trends Neurosci 31:273–278PubMedPubMedCentralCrossRefGoogle Scholar
  106. Masino SA, Geiger JD (2009) The ketogenic diet and epilepsy: is adenosine the missing link? Epilepsia 50:332–333PubMedCrossRefGoogle Scholar
  107. Masino SA, Kawamura M, Wasser CA et al (2009) Adenosine, ketogenic diet and epilepsy: the emerging therapeutic relationship between metabolism and brain activity. Curr Neuropharmacol 7:257–268PubMedPubMedCentralCrossRefGoogle Scholar
  108. Masino SA, Li T, Theofilas P et al (2011) A ketogenic diet suppresses seizures in mice through adenosine a1 receptors. J Clin Inv 121:2679–2683CrossRefGoogle Scholar
  109. Masino SA, Kawamura M, Ruskin DN et al (2012) Purines and neuronal excitability: links to the ketogenic diet. Epilepsy Res 100:229–238PubMedCrossRefGoogle Scholar
  110. Matos M, Augusto E, Machado NJ et al (2012a) Astrocytic adenosine a2a receptors control the amyloid-beta peptide-induced decrease of glutamate uptake. J Alzheimers Dis 31:555–567PubMedCrossRefPubMedCentralGoogle Scholar
  111. Matos M, Augusto E, Santos-Rodrigues AD et al (2012b) Adenosine a2a receptors modulate glutamate uptake in cultured astrocytes and gliosomes. Glia 60:702–716PubMedCrossRefGoogle Scholar
  112. Matos M, Shen H-Y, Augusto E et al (2015) Deletion of adenosine a2a receptors from astrocytes disrupts glutamate homeostasis leading to psychomotor and cognitive impairment: relevance to schizophrenia. Biol Psychiatry 78:763–774PubMedPubMedCentralCrossRefGoogle Scholar
  113. Matyash M, Zabiegalov O, Wendt S et al (2017) The adenosine generating enzymes cd39/cd73 control microglial processes ramification in the mouse brain. PLoS One 12:e0175012PubMedPubMedCentralCrossRefGoogle Scholar
  114. Mazzotti DR, Guindalini C, Pellegrino R et al (2011) Effects of the adenosine deaminase polymorphism and caffeine intake on sleep parameters in a large population sample. Sleep 34:399–402PubMedPubMedCentralCrossRefGoogle Scholar
  115. Mazzotti DR, Guindalini C, de Souza AA et al (2012) Adenosine deaminase polymorphism affects sleep eeg spectral power in a large epidemiological sample. PLoS One 7:e44154PubMedPubMedCentralCrossRefGoogle Scholar
  116. McGaraughty S, Cowart M, Jarvis MF (2001) Recent developments in the discovery of novel adenosine kinase inhibitors: mechanism of action and therapeutic potential. CNS Drug Rev 7:415–432PubMedCrossRefGoogle Scholar
  117. McGaraughty S, Cowart M, Jarvis MF et al (2005) Anticonvulsant and antinociceptive actions of novel adenosine kinase inhibitors. Curr Top Med Chem 5:43–58PubMedCrossRefGoogle Scholar
  118. Miller AA, Spencer SJ (2014) Obesity and neuroinflammation: a pathway to cognitive impairment. Brain Behav Immun 42:10–21PubMedCrossRefGoogle Scholar
  119. Miller-Delaney SF, Bryan K, Das S et al (2015) Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy. Brain 138:616–631PubMedCrossRefPubMedCentralGoogle Scholar
  120. Moffatt BA, Stevens YY, Allen MS et al (2002) Adenosine kinase deficiency is associated with developmental abnormalities and reduced transmethylation. Plant Physiol 128:812–821PubMedPubMedCentralCrossRefGoogle Scholar
  121. Mohamedali KA, Guicherit OM, Kellems RE et al (1993) The highest levels of purine catabolic enzymes in mice are present in the proximal small intestine. J Biol Chem 268:23728–23733PubMedGoogle Scholar
  122. Molina-Arcas M, Casado FJ, Pastor-Anglada M (2009) Nucleoside transporter proteins. Curr Vasc Pharmacol 7:426–434PubMedCrossRefGoogle Scholar
  123. Neal EG, Chaffe H, Schwartz RH et al (2008) The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol 7:500–506PubMedCrossRefPubMedCentralGoogle Scholar
  124. Nilsen KE, Cock HR (2004) Focal treatment for refractory epilepsy: hope for the future? Brain Res Brain Res Rev 44:141–153PubMedCrossRefGoogle Scholar
  125. Noebels J (2011) A perfect storm: converging paths of epilepsy and alzheimer’s dementia intersect in the hippocampal formation. Epilepsia 52(Suppl 1):39–46PubMedPubMedCentralCrossRefGoogle Scholar
  126. O’Connor PJ, Youngstedt SD (1995) Influence of exercise on human sleep. Exerc Sport Sci Rev 23:105–134PubMedGoogle Scholar
  127. Oro J (1961) Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive earth conditions. Nature 191:1193–1194PubMedCrossRefGoogle Scholar
  128. Pak MA, Haas HL, Decking UKM et al (1994) Inhibition of adenosine kinase increases endogenous adenosine and depresses neuronal activity in hippocampal slices. Neuropharmacology 33:1049–1053PubMedCrossRefGoogle Scholar
  129. Palchykova S, Winsky-Sommerer R, Shen H-Y et al (2010) Manipulation of adenosine kinase affects sleep regulation in mice. J Neurosci 30:13157–13165PubMedPubMedCentralCrossRefGoogle Scholar
  130. Park J, Gupta RS (2008) Adenosine kinase and ribokinase - the rk family of proteins. Cell Mol Life Sci 65:2875–2896PubMedCrossRefGoogle Scholar
  131. Parkinson FE, Damaraju VL, Graham K et al (2011) Molecular biology of nucleoside transporters and their distributions and functions in the brain. Curr Top Med Chem 11:948–972PubMedCrossRefPubMedCentralGoogle Scholar
  132. Pascual O, Casper KB, Kubera C et al (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116PubMedCrossRefPubMedCentralGoogle Scholar
  133. Pennycooke M, Chaudary N, Shuralyova I et al (2001) Differential expression of human nucleoside transporters in normal and tumor tissue. Biochem Biophys Res Commun 280:951–959PubMedCrossRefGoogle Scholar
  134. Perry VH (2012) Innate inflammation in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009373PubMedPubMedCentralCrossRefGoogle Scholar
  135. Phillis JW, O’Regan MH (1989) Deoxycoformycin antagonizes ischemia-induced neuronal degeneration. Brain Res Bull 22:537–540PubMedCrossRefGoogle Scholar
  136. Porkka-Heiskanen T, Kalinchuk AV (2011) Adenosine, energy metabolism and sleep homeostasis. Sleep Med Rev 15:123–135PubMedCrossRefGoogle Scholar
  137. Porkka-Heiskanen T, Strecker RE, Thakkar M et al (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276:1265–1268PubMedPubMedCentralCrossRefGoogle Scholar
  138. Rainnie DG, Grunze HCR, McCarley RW et al (1994) Adenosine inhibition of mesopontine cholinergic neurons: implications for eeg arousal. Science 263:689–692PubMedPubMedCentralCrossRefGoogle Scholar
  139. Ramadan A, Naydenova Z, Stevanovic K et al (2014) The adenosine transporter, ent1, in cardiomyocytes is sensitive to inhibition by ethanol in a kinase-dependent manner: implications for ethanol-dependent cardioprotection and nucleoside analog drug cytotoxicity. Purinergic Signal 10:305–312PubMedCrossRefGoogle Scholar
  140. Ravizza T, Kostoula C, Vezzani A (2013) Immunity activation in brain cells in epilepsy: mechanistic insights and pathological consequences. Neuropediatrics 44:330–335PubMedCrossRefGoogle Scholar
  141. Rebola N, Lujan R, Cunha RA et al (2008) Adenosine a2a receptors are essential for long-term potentiation of nmda-epscs at hippocampal mossy fiber synapses. Neuron 57:121–134PubMedCrossRefGoogle Scholar
  142. Retey JV, Adam M, Honegger E et al (2005) A functional genetic variation of adenosine deaminase affects the duration and intensity of deep sleep in humans. Proc Natl Acad Sci U S A 102:15676–15681PubMedPubMedCentralCrossRefGoogle Scholar
  143. Senba E, Daddona PE, Nagy JI (1987) Transient expression of adenosine deaminase in facial and hypoglossal motoneurons of the rat during development. J Comp Neurol 255:217–230PubMedCrossRefGoogle Scholar
  144. Shaw PJ, Cirelli C, Greenspan RJ et al (2000) Correlates of sleep and waking in drosophila melanogaster. Science 287:1834–1837PubMedCrossRefGoogle Scholar
  145. Shen HY, Singer P, Lytle N et al (2012) Adenosine augmentation ameliorates psychotic and cognitive endophenotypes of schizophrenia. J Clin Invest 122:2567–2577PubMedPubMedCentralCrossRefGoogle Scholar
  146. Silva CG, Porciuncula LO, Canas PM et al (2007) Blockade of adenosine a(2a) receptors prevents staurosporine-induced apoptosis of rat hippocampal neurons. Neurobiol Dis 27:182–189PubMedCrossRefGoogle Scholar
  147. Smith CM, Henderson JF (1982) Deoxyadenosine triphosphate accumulation in erythrocytes of deoxycoformycin-treated mice. Biochem Pharmacol 31:1545–1551PubMedCrossRefGoogle Scholar
  148. Soler C, Felipe A, Mata JF et al (1998) Regulation of nucleoside transport by lipopolysaccharide, phorbol esters, and tumor necrosis factor-alpha in human b-lymphocytes. J Biol Chem 273:26939–26945PubMedCrossRefGoogle Scholar
  149. Spychala J, Datta NS, Takabayashi K et al (1996) Cloning of human adenosine kinase cdna: sequence similarity to microbial ribokinases and fructokinases. Proc Natl Acad Sci U S A 93:1232–1237PubMedPubMedCentralCrossRefGoogle Scholar
  150. Stanimirovic DB, Friedman A (2012) Pathophysiology of the neurovascular unit: disease cause or consequence? J Cereb Blood Flow Metab 32:1207–1221PubMedPubMedCentralCrossRefGoogle Scholar
  151. Studer FE, Fedele DE, Marowsky A et al (2006) Shift of adenosine kinase expression from neurons to astrocytes during postnatal development suggests dual functionality of the enzyme. Neuroscience 142:125–137PubMedCrossRefGoogle Scholar
  152. Suvisaari J, Mantere O (2013) Inflammation theories in psychotic disorders: a critical review. Infect Disord Drug Targets 13:59–70PubMedCrossRefGoogle Scholar
  153. Swann JW, Rho JM (2014) How is homeostatic plasticity important in epilepsy? Adv Exp Med Biol 813:123–131PubMedCrossRefGoogle Scholar
  154. Szybala C, Pritchard EM, Wilz A et al (2009) Antiepileptic effects of silk-polymer based adenosine release in kindled rats. Exp Neurol 219:126–135PubMedPubMedCentralCrossRefGoogle Scholar
  155. Theofilas P, Brar S, Stewart K-A et al (2011) Adenosine kinase as a target for therapeutic antisense strategies in epilepsy. Epilepsia 52:589–601PubMedPubMedCentralCrossRefGoogle Scholar
  156. Ugarkar BG, Castellino AJ, DaRe JM et al (2000a) Adenosine kinase inhibitors. 2. Synthesis, enzyme inhibition, and antiseizure activity of diaryltubercidin analogues. J Med Chem 43:2894–2905PubMedCrossRefGoogle Scholar
  157. Ugarkar BG, DaRe JM, Kopcho JJ et al (2000b) Adenosine kinase inhibitors. 1. Synthesis, enzyme inhibition, and antiseizure activity of 5-iodotubercidin analogues. J Med Chem 43:2883–2893PubMedCrossRefGoogle Scholar
  158. Valdes R, Ortega MA, Casado FJ et al (2000) Nutritional regulation of nucleoside transporter expression in rat small intestine. Gastroenterology 119:1623–1630PubMedCrossRefGoogle Scholar
  159. Virus RM, Djuricic-Nedelson M, Radulovacki M et al (1983) The effects of adenosine and 2′-deoxycoformycin on sleep and wakefulness in rats. Neuropharmacology 22:1401–1404PubMedCrossRefGoogle Scholar
  160. Williams-Karnesky RL, Sandau US, Lusardi TA et al (2013) Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J Clin Inv 123:3552–3563CrossRefGoogle Scholar
  161. Yee BK, Singer P, Chen JF et al (2007) Transgenic overexpression of adenosine kinase in brain leads to multiple learning impairments and altered sensitivity to psychomimetic drugs. Eur J Neurosci 26:3237–3252PubMedCrossRefPubMedCentralGoogle Scholar
  162. Yellen G (2008) Ketone bodies, glycolysis, and katp channels in the mechanism of the ketogenic diet. Epilepsia 49(Suppl 8):80–82PubMedPubMedCentralCrossRefGoogle Scholar
  163. Young JD, Yao SY, Baldwin JM et al (2013) The human concentrative and equilibrative nucleoside transporter families, slc28 and slc29. Mol Asp Med 34:529–547CrossRefGoogle Scholar
  164. Zhang G, Franklin PH, Murray TF (1993) Manipulation of endogenous adenosine in the rat prepiriform cortex modulates seizure susceptibility. J Pharmacol Exp Ther 264:1415–1424PubMedGoogle Scholar
  165. Zhou FW, Roper SN (2012) Impaired hippocampal memory function and synaptic plasticity in experimental cortical dysplasia. Epilepsia 53:850–859PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Robert Stone Dow Neurobiology Laboratories, Legacy Research InstitutePortlandUSA

Personalised recommendations