Advertisement

The “Rowdy Classroom Problem” in Children with Dyslexia: A Review

  • Axelle CalcusEmail author
  • Ingrid Hoonhorst
  • Cécile Colin
  • Paul Deltenre
  • Régine Kolinsky
Part of the Literacy Studies book series (LITS, volume 16)

Abstract

Over the last decades, the role of auditory processing difficulties in dyslexia has been largely debated. Recently, speech perception in noise (SIN) difficulties and their potential link with reading impairment have been investigated. However, noise has typically been considered as a unitary concept, despite the very different sort of interference it induces. Indeed, background noise typically interferes with the signal target at both peripheral and central levels of the auditory pathway. Our purpose is to review the literature to better specify SIN perception difficulties in children with dyslexia, with respect to the type of interference induced by the noise. We will first provide a description of the two main types of auditory masking corresponding to peripheral and central levels of interference. Then, we will review the existing studies that investigated SIN perception in children with dyslexia, with a detailed focus on the nature of interference induced. We hope to provide a guide to speech-language therapists, audiologists, and research scientists. In particular, we will specify the nature of the SIN perception difficulties experienced by children with dyslexia and will highlight the need for more precise screening and investigation tools regarding auditory processing difficulties in dyslexia.

Keywords

Dyslexia Masking Speech in noise Cocktail party problem Speech intelligibility Auditory processing 

Notes

Acknowledgements

Preparation of this paper was supported by the FRS-FNRS under grant FRFC 2.4515.12. R.K. is Research Director of the FRS-FNRS, Belgium. P.D. is funded by Brugmann Hospital. P.D. and I.H. are funded by the Fonds IRIS-Recherche.

References

  1. Adlard, A., & Hazan, V. (1998). Speech perception in children with specific reading difficulties (dyslexia). The Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 51(1), 153–177. https://doi.org/10.1080/713755750Google Scholar
  2. Ahissar, M. (2007). Dyslexia and the anchoring-deficit hypothesis. Trends in Cognitive Sciences, 11(11), 458–465. https://doi.org/10.1016/j.tics.2007.08.015Google Scholar
  3. Ahissar, M., Lubin, Y., Putter-Katz, H., & Banai, K. (2006). Dyslexia and the failure to form a perceptual anchor. Nature Neuroscience, 9(12), 1558–1564. https://doi.org/10.1038/nn1800Google Scholar
  4. Ahissar, M., Protopapas, A., Reid, M., & Merzenich, M. M. (2000). Auditory processing parallels reading abilities in adults. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6832–6837.  https://doi.org/10.1073/pnas.97.12.6832Google Scholar
  5. Akram, S., Englitz, B., Elhilali, M., Simon, J. Z., & Shamma, S. A. (2014). Investigating the neural correlates of a streaming percept in an informational-masking paradigm. PloS One, 9(12), e114427.  https://doi.org/10.1371/journal.pone.0114427Google Scholar
  6. Amitay, S., Ahissar, M., & Nelken, I. (2002). Auditory processing deficits in reading disabled adults. Journal of the Association for Research in Otolaryngology, 3(3), 302–320. https://doi.org/10.1007/s101620010093Google Scholar
  7. Arbogast, T. L., Mason, C. R., & Kidd, G., Jr. (2002). The effect of spatial separation on informational and energetic masking of speech. The Journal of the Acoustical Society of America, 112(5 Pt 1), 2086–2098.Google Scholar
  8. Baldeweg, T., Richardson, A., Watkins, S., Foale, C., & Gruzelier, J. (1999). Impaired auditory frequency discrimination in dyslexia detected with mismatch evoked potentials. Annals of Neurology, 45(4), 495–503. https://doi.org/10.1002/1531-8249(199904)45:4{textless}495::AID-ANA11\textgreater3.0.CO;2-MGoogle Scholar
  9. Best, V., Thompson, E. R., Mason, C. R., & Kidd, G., Jr. (2013). Spatial release from masking as a function of the spectral overlap of competing talkers. The Journal of the Acoustical Society of America, 133(6), 3677–3680. https://doi.org/10.1121/1.4803517Google Scholar
  10. Bishop, D. V. M. (2006). What causes specific language impairment in children? Current Directions in Psychological Science, 15(5), 217–221. https://doi.org/10.1111/j.1467-8721.2006.00439.xGoogle Scholar
  11. Blau, V., Reithler, J., van Atteveldt, N., Seitz, J., Gerretsen, P., Goebel, R., & Blomert, L. (2010). Deviant processing of letters and speech sounds as proximate cause of reading failure: A functional magnetic resonance imaging study of dyslexic children. Brain, 133(3), 868–879.  https://doi.org/10.1093/brain/awp308Google Scholar
  12. Blau, V., van Atteveldt, N., Ekkebus, M., Goebel, R., & Blomert, L. (2009). Reduced neural integration of letters and speech sounds links phonological and reading deficits in adult dyslexia. Current Biology, 19(6), 503–508. https://doi.org/10.1016/j.cub.2009.01.065Google Scholar
  13. Blomert, L., & Mitterer, H. (2004). The fragile nature of the speech-perception deficit in dyslexia: Natural vs. synthetic speech. Brain and Language, 89(1), 21–26. https://doi.org/10.1016/S0093-934X(03)00305-5Google Scholar
  14. Boets, B., Op de Beeck, H. P., Vandermosten, M., Scott, S. K., Gillebert, C. R., Mantini, D., …Ghesquière, P. (2013). Intact but less accessible phonetic representations in adults with dyslexia. Science, 342(6163), 1251–1254.  https://doi.org/10.1126/science.1244333Google Scholar
  15. Boets, B., Vandermosten, M., Poelmans, H., Luts, H., Wouters, J., & Ghesquière, P. (2011). Preschool impairments in auditory processing and speech perception uniquely predict future reading problems. Research in Developmental Disabilities, 32(2), 560–570. https://doi.org/10.1016/j.ridd.2010.12.020Google Scholar
  16. Bradley, J. S., & Sato, H. (2008). The intelligibility of speech in elementary school classrooms. The Journal of the Acoustical Society of America, 123(4), 2078–2086. https://doi.org/10.1121/1.2839285Google Scholar
  17. Bradlow, A. R., Kraus, N., & Hayes, E. (2003). Speaking clearly for children with learning disabilities: Sentence perception in noise. Journal of Speech, Language, and Hearing Research, 46(1), 80–97. https://doi.org/10.1044/1092-4388(2003/007)Google Scholar
  18. Brady, S., Shankweiler, D., & Mann, V. (1983). Speech perception and memory coding in relation to reading ability. Journal of Experimental Child Psychology, 35(2), 345–367. https://doi.org/10.1016/0022-0965(83)90087-5Google Scholar
  19. Brandt, J., & Rosen, J. J. (1980). Auditory phonemic perception in dyslexia: Categorical identification and discrimination of stop consonants. Brain and Language, 9(2), 324–337. https://doi.org/10.1016/0093-934X(80)90152-2Google Scholar
  20. Brungart, D. S. (2001). Informational and energetic masking effects in the perception of two simultaneous talkers. The Journal of the Acoustical Society of America, 109(3), 1101–1109. https://doi.org/10.1121/1.1345696Google Scholar
  21. Brungart, D. S., Simpson, B. D., Ericson, M. A., & Scott, K. R. (2001). Informational and energetic masking effects in the perception of multiple simultaneous talkers. The Journal of the Acoustical Society of America, 110(5 Pt 1), 2527–2538. https://doi.org/10.1121/1.1408946Google Scholar
  22. Calcus, A., Colin, C., Deltenre, P., & Kolinsky, R. (2015a). Informational masking of complex tones in dyslexic children. Neuroscience Letters, 584, 71–76. https://doi.org/10.1016/j.neulet.2014.10.026Google Scholar
  23. Calcus, A., Colin, C., Deltenre, P., & Kolinsky, R. (2015b). Informational masking of speech in dyslexic children. The Journal of the Acoustical Society of America, 137(6), EL496-502. https://doi.org/10.1121/1.4922012Google Scholar
  24. Calcus, A., Deltenre, P., Colin, C., & Kolinsky, R. (2017). Peripheral and central contribution to the difficulty of speech in noise perception in dyslexic children. Developmental Science, 51(6), 1–13.  https://doi.org/10.1111/desc.12558Google Scholar
  25. Calcus, A., Lorenzi, C., Collet, G., Colin, C., & Kolinsky, R. (2016). Is there a relationship between speech identification in noise and categorical perception in children with dyslexia? Journal of Speech, Language, and Hearing Research, 59(4), 835–852. https://doi.org/10.1044/2016_JSLHR-H-15-0076Google Scholar
  26. Chandrasekaran, B., Hornickel, J., Skoe, E., Nicol, T., & Kraus, N. (2009). Context-dependent encoding in the human auditory brainstem relates to hearing speech in noise: Implications for developmental dyslexia. Neuron, 64(3), 311–319. https://doi.org/10.1016/j.neuron.2009.10.006Google Scholar
  27. Chang, E. F., Rieger, J. W., Johnson, K., Berger, M. S., Barbaro, N. M., & Knight, R. T. (2010). Categorical speech representation in human superior temporal gyrus. Nature Neuroscience, 13(11), 1428–1432. https://doi.org/10.1038/nn.2641Google Scholar
  28. Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. The Journal of the Acoustical Society of America, 25(5), 975–979. https://doi.org/10.1121/1.1907229Google Scholar
  29. Cornelissen, P. L., Hansen, P. C., Bradley, L., & Stein, J. F. (1996). Analysis of perceptual confusions between nine sets of consonant-vowel sounds in normal and dyslexic adults. Cognition, 59(3), 275–306. https://doi.org/10.1016/0010-0277(95)00697-4Google Scholar
  30. Darwin, C. J. (1997). Auditory grouping. Trends in Cognitive Sciences, 1(9), 327–333. https://doi.org/10.1016/S1364-6613(97)01097-8Google Scholar
  31. Dau, T., Kollmeier, B., & Kohlrausch, A. (1997). Modeling auditory processing of amplitude modulation. I: Detection and masking with narrow-band carriers. The Journal of the Acoustical Society of America, 102(5 Pt 1), 2892–2905. https://doi.org/10.1121/1.420344Google Scholar
  32. Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Nunes Filho, G., Jobert, A., …Cohen, L. (2010). How learning to read changes the cortical networks for vision and language. Science, 330(6009), 1359–1364.  https://doi.org/10.1126/science.1194140Google Scholar
  33. Desroches, A. S., Cone, N. E., Bolger, D. J., Bitan, T., Burman, D. D., & Booth, J. R. (2010). Children with reading difficulties show differences in brain regions associated with orthographic processing during spoken language processing. Brain Research, 1356, 73–84. https://doi.org/10.1016/j.brainres.2010.07.097Google Scholar
  34. Dole, M., Hoen, M., & Meunier, F. (2012). Speech-in-noise perception deficit in adults with dyslexia: Effects of background type and listening configuration. Neuropsychologia, 50(7), 1543–1552. https://doi.org/10.1016/j.neuropsychologia.2012.03.007Google Scholar
  35. Durlach, N. I., Mason, C. R., Kidd, G., Jr, Arbogast, T. L., Colburn, H. S., & Shinn-Cunningham, B. G. (2003). Note on informational masking. The Journal of the Acoustical Society of America, 113(6), 2984–2987. https://doi.org/10.1121/1.1570435Google Scholar
  36. Eden, G. F., & Vaidya, C. J. (2008). ADHD and developmental dyslexia: Two pathways leading to impaired learning. Annals of the New York Academy of Sciences, 1145, 316–327.  https://doi.org/10.1196/annals.1416.022Google Scholar
  37. Elbro, C., Borstrøm, I., & Petersen, D. K. (1998). Predicting dyslexia from kindergarten: The importance of distinctness of phonological representations of lexical items. Reading Research Quarterly, 33(1), 36–60.  https://doi.org/10.1598/RRQ.33.1.3Google Scholar
  38. Festen, J. M. (1990). Effects of fluctuating noise and interfering speech on the speech-reception threshold for impaired and normal hearing. The Journal of the Acoustical Society of America, 88(4), 1725. https://doi.org/10.1121/1.400247Google Scholar
  39. Fluss, J., Ziegler, J. C., Warszawski, J., Ducot, B., Richard, G., & Billard, C. (2009). Poor reading in French elementary school: The interplay of cognitive, behavioral, and socioeconomic factors. Journal of Developmental and Behavioral Pediatrics, 30(3), 206–216.  https://doi.org/10.1097/DBP.0b013e3181a7ed6cGoogle Scholar
  40. Freyman, R. L., Balakrishnan, U., & Helfer, K. S. (2001). Spatial release from informational masking in speech recognition. The Journal of the Acoustical Society of America, 109(5 Pt 1), 2112–2122. https://doi.org/10.1121/1.1354984Google Scholar
  41. Freyman, R. L., Balakrishnan, U., & Helfer, K. S. (2004). Effect of number of masking talkers and auditory priming on informational masking in speech recognition. The Journal of the Acoustical Society of America, 115(5 Pt 1), 2246–2256. https://doi.org/10.1121/1.1689343Google Scholar
  42. Freyman, R. L., Helfer, K. S., McCall, D. D., & Clifton, R. K. (1999). The role of perceived spatial separation in the unmasking of speech. The Journal of the Acoustical Society of America, 106(6), 3578–3588. https://doi.org/10.1121/1.428211Google Scholar
  43. Glasberg, B. R., & Moore, B. C. (1990). Derivation of auditory filter shapes from notched-noise data. Hearing Research, 47(1-2), 103–138. https://doi.org/10.1016/0378-5955(90)90170-TGoogle Scholar
  44. Gnansia, D., Jourdes, V., & Lorenzi, C. (2008). Effect of masker modulation depth on speech masking release. Hearing Research, 239(1–2), 60–68. https://doi.org/10.1016/j.heares.2008.01.012Google Scholar
  45. Godfrey, J. J., Syrdal-Lasky, K., Millay, K. K., & Knox, C. M. (1981). Performance of dyslexic children on speech perception tests. Journal of Experimental Child Psychology, 32(3), 401–424. https://doi.org/10.1016/0022-0965(81)90105-3Google Scholar
  46. Goswami, U. (2003). Why theories about developmental dyslexia require developmental designs. Trends in Cognitive Sciences, 7(12), 534–540. https://doi.org/10.1016/j.tics.2003.10.003Google Scholar
  47. Goswami, U. (2015). Sensory theories of developmental dyslexia: Three challenges for research. Nature Reviews. Neuroscience, 16, 43–54.  https://doi.org/10.1038/nrn3836Google Scholar
  48. Gutschalk, A., Micheyl, C., & Oxenham, A. J. (2008). Neural correlates of auditory perceptual awareness under informational masking. PLoS Biology, 6(6), e138.  https://doi.org/10.1371/journal.pbio.0060138Google Scholar
  49. Hämäläinen, J. A., Rupp, A., Soltész, F., Szücs, D., & Goswami, U. (2012). Reduced phase locking to slow amplitude modulation in adults with dyslexia: An MEG study. NeuroImage, 59(3), 2952–2961. https://doi.org/10.1016/j.neuroimage.2011.09.075Google Scholar
  50. Hämäläinen, J. A., Salminen, H. K., & Leppänen, P. H. T. (2013). Basic auditory processing deficits in dyslexia: Systematic review of the behavioral and event-related potential/field evidence. Journal of Learning Disabilities, 46(5), 413–427. https://doi.org/10.1177/0022219411436213Google Scholar
  51. Hari, R., & Kiesilä, P. (1996). Deficit of temporal auditory processing in dyslexic adults. Neuroscience Letters, 205(2), 138–140. https://doi.org/10.1016/0304-3940(96)12393-4Google Scholar
  52. Hazan, V., Messaoud-Galusi, S., Rosen, S., Nouwens, S., & Shakespeare, B. (2009). Speech perception abilities of adults with dyslexia: Is there any evidence for a true deficit? Journal of Speech, Language, and Hearing Research, 52(6), 1510–1529. https://doi.org/10.1044/1092-4388(2009/08-0220)Google Scholar
  53. Hazan, V., Romeo, R., & Pettinato, M. (2013). The impact of variation in phoneme category structure on consonant intelligibility. Proceedings of Meetings on Acoustics, 19(1), 060103. https://doi.org/10.1121/1.4800618Google Scholar
  54. Helenius, P., Uutela, K., & Hari, R. (1999). Auditory stream segregation in dyslexic adults. Brain, 122(5), 907–913.  https://doi.org/10.1093/brain/122.5.907Google Scholar
  55. Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews. Neuroscience, 8(5), 393–402.  https://doi.org/10.1038/nrn2113Google Scholar
  56. Inoue, T., Higashibara, F., Okazaki, S., & Maekawa, H. (2011). Speech perception in noise deficits in Japanese children with reading difficulties: Effects of presentation rate. Research in Developmental Disabilities, 32(6), 2748–2757. https://doi.org/10.1016/j.ridd.2011.05.035Google Scholar
  57. Jacquemot, C., Pallier, C., Le Bihan, D., Dehaene, S., & Dupoux, E. (2003). Phonological grammar shapes the auditory cortex: A functional magnetic resonance imaging study. The Journal of Neuroscience, 23(29), 9541–9546.Google Scholar
  58. Jaffe-Dax, S., Daikhin, L., & Ahissar, M. (2018). Dyslexia: A failure in attaining expert-level reading due to poor formation of auditory predictions. In T. Lachmann & T. Weis (Eds.), Reading and dyslexia. Cham: Springer.Google Scholar
  59. Jamieson, D. G., Kranjc, G., Yu, K., & Hodgetts, W. E. (2004). Speech intelligibility of young school-aged children in the presence of real-life classroom noise. Journal of the American Academy of Audiology, 15(7), 508–517.  https://doi.org/10.3766/jaaa.15.7.5Google Scholar
  60. Kidd, G., Arbogast, T. L., Mason, C. R., & Gallun, F. J. (2005). The advantage of knowing where to listen. The Journal of the Acoustical Society of America, 118(6), 3804–3815. https://doi.org/10.1121/1.2109187Google Scholar
  61. Kidd, G., Best, V., & Mason, C. R. (2008). Listening to every other word: Examining the strength of linkage variables in forming streams of speech. The Journal of the Acoustical Society of America, 124(6), 3793–3802. https://doi.org/10.1121/1.2998980Google Scholar
  62. Kidd, G., Mason, C., Deliwala, P., Woods, W., & Colburn, S. (1994). Reducing informational masking by sound segregation. The Journal of the Acoustical Society of America, 95(6), 3475–3480. https://doi.org/10.1121/1.410023Google Scholar
  63. Kolinsky, R. (2015). How learning to read influences language and cognition. In A. Pollatsek & R. Treiman (Eds.), The Oxford handbook of reading (pp. 377–393). Oxford: Oxford University Press.Google Scholar
  64. Lallier, M., Tainturier, M.-J., Dering, B., Donnadieu, S., Valdois, S., & Thierry, G. (2011). Behavioral and ERP evidence for amodal sluggish attentional shifting in developmental dyslexia. Neuropsychologia, 48(14), 4125–4135. https://doi.org/10.1016/j.neuropsychologia.2010.09.027Google Scholar
  65. Landerl, K., & Willburger, E. (2010). Temporal processing, attention, and learning disorders. Learning and Individual Differences, 20(5), 393–401. https://doi.org/10.1016/j.lindif.2010.03.008Google Scholar
  66. Law, J. M., Vandermosten, M., Ghesquière, P., & Wouters, J. (2014). The relationship of phonological ability, speech perception, and auditory perception in adults with dyslexia. Frontiers in Human Neuroscience, 8, 482.  https://doi.org/10.3389/fnhum.2014.00482.Google Scholar
  67. Leppänen, P. H. T., Hämäläinen, J. A., Salminen, H. K., Eklund, K. M., Guttorm, T. K., Lohvansuu, K., …Lyytinen, H. (2010). Newborn brain event-related potentials revealing atypical processing of sound frequency and the subsequent association with later literacy skills in children with familial dyslexia. Cortex, 46(10), 1362–1376. https://doi.org/10.1016/j.cortex.2010.06.003Google Scholar
  68. Liberman, I. Y. (1973). Segmentation of the spoken word and reading acquisition. Bulletin of the Orton Society, 23(1), 64–77. https://doi.org/10.1007/BF02653842Google Scholar
  69. Liberman, A. M., Harris, K. S., Hoffman, H. S., & Griffith, B. C. (1957). The discrimination of speech sounds within and across phoneme boundaries. Journal of Experimental Psychology, 54(5), 358–368. https://doi.org/10.1037/h0044417Google Scholar
  70. Lindgren, S. D., Renzi, E. de, & Richman, L. C. (1985). Cross-national comparisons of developmental dyslexia in Italy and the United States. Child Development, 56(6), 1404–1417. https://doi.org/10.2307/1130460Google Scholar
  71. Lutfi, R. A., Kistler, D. J., Oh, E. L., Wightman, F. L., & Callahan. (2003). One factor underlies individual differences in auditory informational masking within and across age groups. Perception & Psychophysics, 65(3), 396. https://doi.org/10.3758/BF03194571Google Scholar
  72. Manis, F. R., Mcbride-Chang, C., Seidenberg, M. S., Keating, P., Doi, L. M., Munson, B., & Petersen, A. (1997). Are speech perception deficits associated with developmental dyslexia? Journal of Experimental Child Psychology, 66(2), 211–235.  https://doi.org/10.1006/jecp.1997.2383Google Scholar
  73. McAnally, K. I., & Stein, J. F. (1996). Auditory temporal coding in dyslexia. Proceedings. Biological Sciences, 263(1373), 961–965.  https://doi.org/10.1098/rspb.1996.0142Google Scholar
  74. McAnally, K. I., & Stein, J. F. (1997). Scalp potentials evoked by amplitude-modulated tones in dyslexia. Journal of Speech, Language, and Hearing Research, 40(4), 939–945.  https://doi.org/10.1044/jslhr.4004.939Google Scholar
  75. Menell, P., McAnally, K. I., & Stein, J. F. (1999). Psychophysical sensitivity and physiological response to amplitude modulation in adult dyslexic listeners. Journal of Speech, Language, and Hearing Research, 42(4), 797–803.  https://doi.org/10.1044/jslhr.4204.797Google Scholar
  76. Messaoud-Galusi, S., Hazan, V., & Rosen, S. (2013). Investigating speech perception in children with dyslexia: Is there evidence of a consistent deficit in individuals? Journal of Speech, Language, and Hearing Research, 54(6), 1682. https://doi.org/10.1044/1092-4388(2011/09-0261)Google Scholar
  77. Mody, M., Studdert-Kennedy, M., & Brady, S. (1997). Speech perception deficits in poor readers: Auditory processing or phonological coding? Journal of Experimental Child Psychology, 64 (2), 199–231.  https://doi.org/10.1006/jecp.1996.2343Google Scholar
  78. Monzalvo, K., Fluss, J., Billard, C., Dehaene, S., & Dehaene-Lambertz, G. (2012). Cortical networks for vision and language in dyslexic and normal children of variable socio-economic status. NeuroImage, 61(1), 258–274. https://doi.org/10.1016/j.neuroimage.2012.02.035Google Scholar
  79. Morais, J. (2018). The methods issue revisted: From a developmental and a socio-cultural-political perspective. In T. Lachmann & T. Weis (Eds.), Reading and dyslexia. Cham: Springer.Google Scholar
  80. Morais, J., Cary, L., Alegria, J., & Bertelson, P. (1979). Does awareness of speech as a sequence of phones arise spontaneously? Cognition, 7(4), 323–331. https://doi.org/10.1016/0010-0277(79)90020-9Google Scholar
  81. Morais, J., Castro, S.-L., & Kolinsky, R. (1991). La reconnaissance des mots chez les adultes illettres. In R. Kolinsky, J. Morais, & J. Segui (Eds.), La reconnaissance des mots dans les différentes modalités sensorielles (pp. 59–80). Paris: Presses Universitaires de France.Google Scholar
  82. Morais, J., Castro, S. L., Scliar-Cabral, L., Kolinsky, R., & Content, A. (1987). The effects of literacy on the recognition of dichotic words. The Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 39(3), 451–465. https://doi.org/10.1080/14640748708401798Google Scholar
  83. Morais, J., Cluytens, M., & Alegria, J. (1984). Segmentation abilities of dyslexics and normal readers. Perceptual and Motor Skills, 58(1), 221–222.  https://doi.org/10.2466/pms.1984.58.1.221Google Scholar
  84. Neff, D. L., Dethlefs, T. M., & Jesteadt, W. (1993). Informational masking for multicomponent maskers with spectral gaps. The Journal of the Acoustical Society of America, 94(6), 3112–3126. https://doi.org/10.1121/1.407217Google Scholar
  85. Neff, D. L., & Green, D. M. (1987). Masking produced by spectral uncertainty with multicomponent maskers. Perception & Psychophysics, 41(5), 409–415. https://doi.org/10.3758/BF03203033Google Scholar
  86. Oxenham, A. J., Fligor, B. J., Mason, C. R., & Kidd, G., Jr. (2003). Informational masking and musical training. The Journal of the Acoustical Society of America, 114(3), 1543–1549. https://doi.org/10.1121/1.1598197Google Scholar
  87. Pattamadilok, C., Morais, J., & Kolinsky, R. (2011). Naming in noise: The contribution of orthographic knowledge to speech repetition. Frontiers in Psychology, 2, 361.  https://doi.org/10.3389/fpsyg.2011.00361Google Scholar
  88. Pattamadilok, C., Nelis, A., & Kolinsky, R. (2014). How does reading performance modulate the impact of orthographic knowledge on speech processing? A comparison of normal readers and dyslexic adults. Annals of Dyslexia, 64(1), 57–76. https://doi.org/10.1007/s11881-013-0086-8Google Scholar
  89. Pennington, B. F. (2006). From single to multiple deficit models of developmental disorders. Cognition, 101(2), 385–413. https://doi.org/10.1016/j.cognition.2006.04.008Google Scholar
  90. Plakas, A., van Zuijen, T., van Leeuwen, T., Thomson, J. M., & van der Leij, A. (2013). Impaired non-speech auditory processing at a pre-reading age is a risk-factor for dyslexia but not a predictor: An ERP study. Cortex, 49(4), 1034–1045. https://doi.org/10.1016/j.cortex.2012.02.013Google Scholar
  91. Poelmans, H., Luts, H., Vandermosten, M., Boets, B., Ghesquière, P., & Wouters, J. (2011). Reduced sensitivity to slow-rate dynamic auditory information in children with dyslexia. Research in Developmental Disabilities, 32(6), 2810–2819. https://doi.org/10.1016/j.ridd.2011.05.025Google Scholar
  92. Pollack, I. (1975). Auditory informational masking. The Journal of the Acoustical Society of America, 57(S1), S5. https://doi.org/10.1121/1.1995329Google Scholar
  93. Ramus, F., Pidgeon, E., & Frith, U. (2003). The relationship between motor control and phonology in dyslexic children. Journal of Child Psychology and Psychiatry, 44(5), 712–722. https://doi.org/10.1111/1469-7610.00157Google Scholar
  94. Remez, R. E., Rubin, P. E., Pisoni, D. B., & Carrell, T. D. (1981). Speech perception without traditional speech cues. Science, 212(4497), 947–949.  https://doi.org/10.1126/science.7233191Google Scholar
  95. Robertson, E. K., Joanisse, M. F., Desroches, A. S., & Ng, S. (2009). Categorical speech perception deficits distinguish language and reading impairments in children. Developmental Science, 12(5), 753–767. https://doi.org/10.1111/j.1467-7687.2009.00806.xGoogle Scholar
  96. Rosen, G. D., Windzio, H., & Galaburda, A. M. (2001). Unilateral induced neocortical malformation and the formation of ipsilateral and contralateral barrel fields. Neuroscience, 103(4), 931–939. https://doi.org/10.1016/S0306-4522(01)00044-6Google Scholar
  97. Rosen, S. (1992). Temporal information in speech: Acoustic, auditory and linguistic aspects. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 336(1278), 367–373.  https://doi.org/10.1098/rstb.1992.0070Google Scholar
  98. Rosen, S. (2003). Auditory processing in dyslexia and specific language impairment: Is there a deficit? What is its nature? Does it explain anything? Journal of Phonetics, 31(3–4), 509–527. https://doi.org/10.1016/S0095-4470(03)00046-9Google Scholar
  99. Rosen, S., & Manganari, E. (2001). Is there a relationship between speech and nonspeech auditory processing in children with dyslexia? Journal of Speech, Language, and Hearing Research, 44(4), 720–736. https://doi.org/10.1044/1092-4388(2001/057)Google Scholar
  100. Ruggles, D., Bharadwaj, H., & Shinn-Cunningham, B. G. (2011). Normal hearing is not enough to guarantee robust encoding of suprathreshold features important in everyday communication. Proceedings of the National Academy of Sciences of the United States of America, 108(37), 15516–15521.  https://doi.org/10.1073/pnas.1108912108Google Scholar
  101. Rüsseler, J., Gerth, I., Heldmann, M., & Münte, T. F. (2015). Audiovisual perception of natural speech is impaired in adult dyslexics: An ERP study. Neuroscience, 287, 55–65. https://doi.org/10.1016/j.neuroscience.2014.12.023Google Scholar
  102. Sebastian, C., & Yasin, I. (2008). Speech versus tone processing in compensated dyslexia: Discrimination and lateralization with a dichotic mismatch negativity (MMN) paradigm. International Journal of Psychophysiology, 70(2), 115–126. https://doi.org/10.1016/j.ijpsycho.2008.08.004Google Scholar
  103. Serniclaes, W., Sprenger-Charolles, L., Carre, R., & Demonet, J. F. (2001). Perceptual discrimination of speech sounds in developmental dyslexia. Journal of Speech, Language, and Hearing Research, 44(2), 384–399. https://doi.org/10.1044/1092-4388(2001/032)Google Scholar
  104. Serniclaes, W., van Heghe, S., Mousty, P., Carre, R., & Sprenger-Charolles, L. (2004). Allophonic mode of speech perception in dyslexia. Journal of Experimental Child Psychology, 87(4), 336–361. https://doi.org/10.1016/j.jecp.2004.02.001Google Scholar
  105. Serniclaes, W., Ventura, P., Morais, J., & Kolinsky, R. (2005). Categorical perception of speech sounds in illiterate adults. Cognition, 98(2), B35-44. https://doi.org/10.1016/j.cognition.2005.03.002Google Scholar
  106. Shankweiler, D., & Liberman, I. (1972). Misreading: A search for causes. In J. F. Kavanagh & I. G. Mattingly (Eds.), Language by ear and by eye (pp. 293–317). Cambridge, MA: MIT Press.Google Scholar
  107. Share, D. L. (1995). Phonological recoding and self-teaching: Sine qua non of reading acquisition. Cognition, 55(2), 151–218. https://doi.org/10.1016/0010-0277(94)00645-2Google Scholar
  108. Shield, B., & Dockrell, J. (2003). The effects of noise on children at school: A review. Building Acoustics, 10(2), 97–116. https://doi.org/10.1260/135101003768965960Google Scholar
  109. Shield, B., & Dockrell, J. (2008). The effects of environmental and classroom noise on the academic attainments of primary school children. The Journal of the Acoustical Society of America, 123(1), 133–144. https://doi.org/10.1121/1.2812596Google Scholar
  110. Simpson, S. A., & Cooke, M. (2005). Consonant identification in N-talker babble is a nonmonotonic function of N. The Journal of the Acoustical Society of America, 118(5), 2775–2778. https://doi.org/10.1121/1.2062650Google Scholar
  111. Smith, K., & Griffiths, P. (1987). Defective lateralized attention for non-verbal sounds in developmental dyslexia. Neuropsychologia, 25(1B), 259–268. https://doi.org/10.1016/0028-3932(87)90136-9Google Scholar
  112. Snowling, M., Goulandris, N., Bowlby, M., & Howell, P. (1986). Segmentation and speech perception in relation to reading skill: A developmental analysis. Journal of Experimental Child Psychology, 41(3), 489–507. https://doi.org/10.1016/0022-0965(86)90006-8Google Scholar
  113. Stein, J. F. (2001). The magnocellular theory of developmental dyslexia. Dyslexia, 7(1), 12–36.  https://doi.org/10.1002/dys.186Google Scholar
  114. Stein, J. F. (2018). The magnocellular theory of developmental dyslexia. In T. Lachmann & T. Weis (Eds.), Reading and dyslexia. Cham: Springer.Google Scholar
  115. Stone, M. A., Füllgrabe, C., & Moore, B. C. J. (2012). Notionally steady background noise acts primarily as a modulation masker of speech. The Journal of the Acoustical Society of America, 132(1), 317–326. https://doi.org/10.1121/1.4725766Google Scholar
  116. Sutter, M. L., Petkov, C., Baynes, K., & O’Connor, K. (2000). Auditory scence analysis in dyslexics. Neuroreport, 11(9), 1967–1971. https://doi.org/10.1097/00001756-200006260-00032Google Scholar
  117. Tallal, P. (1980). Auditory temporal perception, phonics, and reading disabilities in children. Brain and Language, 9(2), 182–198. https://doi.org/10.1016/0093-934X(80)90139-XGoogle Scholar
  118. van Beinum, F. J., Schwippert, C. E., Been, P. H., van Leeuwen, T. H., & Kuijpers, C. T. (2005). Development and application of a /bak/–/dak/ continuum for testing auditory perception within the Dutch longitudinal dyslexia study. Speech Communication, 47 (1–2), 124–142. https://doi.org/10.1016/j.specom.2005.04.003Google Scholar
  119. van Bergen, E., van der Leij, A., & de Jong, P. F. (2014). The intergenerational multiple deficit model and the case of dyslexia. Frontiers in Human Neuroscience, 8, 346.  https://doi.org/10.3389/fnhum.2014.00346Google Scholar
  120. Varnet, L., Meunier, F., Trolle, G., & Hoen, M. (2016). Direct viewing of dyslexics’ compensatory strategies in speech in noise using auditory classification images. PloS One, 11(4), e0153781.  https://doi.org/10.1371/journal.pone.0153781Google Scholar
  121. Vellutino, F. R., Fletcher, J. M., Snowling, M. J., & Scanlon, D. M. (2004). Specific reading disability (dyslexia): What have we learned in the past four decades? Journal of Child Psychology and Psychiatry, 45(1), 2–40. https://doi.org/10.1046/j.0021-9630.2003.00305.xGoogle Scholar
  122. Wagner, R. K., & Torgesen, J. K. (1987). The nature of phonological processing and its causal role in the acquisition of reading skills. Psychological Bulletin, 101(2), 192–212. https://doi.org/10.1037/0033-2909.101.2.192Google Scholar
  123. Wightman, F. L., Kistler, D. J., & O’Bryan, A. (2010). Individual differences and age effects in a dichotic informational masking paradigm. The Journal of the Acoustical Society of America, 128(1), 270–279. https://doi.org/10.1121/1.3436536Google Scholar
  124. Winer, J. A. (2006). Decoding the auditory corticofugal systems. Hearing Research, 207(1–2), 1–9. https://doi.org/10.1016/j.heares.2005.06.007Google Scholar
  125. World Health Organization (Ed.). (2008). International statistical classification of diseases and related health problems (10th ed.), Berlin/Heidelberg: Springer.  https://doi.org/10.1007/SpringerReference
  126. Yang, Z., Chen, J., Huang, Q., Wu, X., Wu, Y., Schneider, B. A., & Li, L. (2007). The effect of voice cuing on releasing Chinese speech from informational masking. Speech Communication, 49(12), 892–904. https://doi.org/10.1016/j.specom.2007.05.005Google Scholar
  127. Zeng, F.-G., Nie, K., Stickney, G. S., Kong, Y.-Y., Vongphoe, M., Bhargave, A., …Cao, K. (2005). Speech recognition with amplitude and frequency modulations. Proceedings of the National Academy of Sciences of the United States of America, 102(7), 2293–2298.  https://doi.org/10.1073/pnas.0406460102Google Scholar
  128. Zettler, C. M., Sevcik, R. A., Morris, R. D., & Clarkson, M. G. (2008). Comodulation masking release (CMR) in children and the influence of reading status. Journal of Speech, Language, and Hearing Research, 51(3), 772. https://doi.org/10.1044/1092-4388(2008/055)Google Scholar
  129. Zhang, C., Lu, L., Wu, X., & Li, L. (2014). Attentional modulation of the early cortical representation of speech signals in informational or energetic masking. Brain and Language, 135, 85–95. https://doi.org/10.1016/j.bandl.2014.06.002Google Scholar
  130. Ziegler, J. C. (2008). Better to lose the anchor than the whole ship. Trends in Cognitive Sciences, 12(7), 244–245. https://doi.org/10.1016/j.tics.2008.04.001Google Scholar
  131. Ziegler, J. C., & Ferrand, L. (1998). Orthography shapes the perception of speech: The consistency effect in auditory word recognition. Psychonomic Bulletin & Review, 5(4), 683–689. https://doi.org/10.3758/BF03208845Google Scholar
  132. Ziegler, J. C., Pech-Georgel, C., George, F., & Lorenzi, C. (2009). Speech-perception-in-noise deficits in dyslexia. Developmental Science, 12(5), 732–745. https://doi.org/10.1111/j.1467-7687.2009.00817.xGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Axelle Calcus
    • 1
    • 2
    • 3
    • 4
    Email author
  • Ingrid Hoonhorst
    • 5
  • Cécile Colin
    • 6
  • Paul Deltenre
    • 5
  • Régine Kolinsky
    • 7
    • 8
  1. 1.Fonds de la Recherche Scientifique – FNRS (FRS-FNRS)BrusselsBelgium
  2. 2.Laboratoire de Neurophysiologie Sensorielle et CognitiveHôpital BrugmannBrusselsBelgium
  3. 3.Unité de Recherche en Neurosciences Cognitives (UNESCOG), Center for Research in Cognition & Neurosciences (CRCN)Université Libre de Bruxelles (ULB)BrusselsBelgium
  4. 4.Speech, Hearing and Phonetic SciencesUniversity College LondonLondonUK
  5. 5.Laboratoire de Neurophysiologie Sensorielle et CognitiveHôpital BrugmannBrusselsBelgium
  6. 6.Unité de Recherche en Neurosciences Cognitives (UNESCOG), Center for Research in Cognition & Neurosciences (CRCN)Université Libre de Bruxelles (ULB)BrusselsBelgium
  7. 7.Fonds de la Recherche Scientifique – FNRS (FRS-FNRS)BrusselsBelgium
  8. 8.Unité de Recherche en Neurosciences Cognitives (UNESCOG), Center for Research in Cognition and Neurosciences (CRCN)Université Libre de Bruxelles (ULB)BrusselsBelgium

Personalised recommendations