CloudShare: Towards a Cost-Efficient and Privacy-Preserving Alliance Cloud Using Permissioned Blockchains

  • Yandong Li
  • Liehuang Zhu
  • Meng ShenEmail author
  • Feng Gao
  • Baokun Zheng
  • Xiaojiang Du
  • Sheng Liu
  • Shu Yin
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 235)


Data explosion has raised a scalability challenge to cloud storage management, while spinning disk capacity growth rates will continue to slow down. Major data holders such as cloud storage providers with a heavy reliance on disk as a storage medium will need to orchestrate multiple kinds of storage to better manage their relentless data growth.

In this paper, we first explore the scenario that multiple clouds are driven by interests to make the storage resources efficiently allocated without requiring a trusted third party, and then propose a novel model, called CloudShare, to enable multi-clouds to carry out a transparent encrypted data deduplication among cross-users via blockchain. Our scheme significantly reduces the storage costs of each cloud, and saves the upload bandwidth of users, while ensuring data confidentiality and consistency. We demonstrate via simulations on a realistic datasets that CloudShare achieves both the effectiveness and the efficiency.


Cloud storage Blockchain De-duplication Cost-efficient Privacy-preserving Sharing economy 



This work was supported in part by the National Science Foundation of China under Grant 61602039, in part by the Beijing Natural Science Foundation under Grant 4164098, and in part by the BIT-UMF research and development fund.


  1. 1.
    Sharma, S.: Expanded cloud plumes hiding big data ecosystem. Future Gener. Comput. Syst. 59, 63–92 (2016)CrossRefGoogle Scholar
  2. 2.
    Waldrop, M.M.: More than moore. Nature 530(7589), 144 (2016)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Akhila, K., Ganesh, A., Sunitha, C.: A study on deduplication techniques over encrypted data. Procedia Comput. Sci. 87, 38–43 (2016)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Hamari, J., Sjöklint, M., Ukkonen, A.: The sharing economy: why people participate in collaborative consumption. J. Assoc. Inf. Sci. Technol. 67(9), 2047–2059 (2016)CrossRefGoogle Scholar
  7. 7.
    Zheng, Z., Xie, S., Dai, H.N., et al.: Blockchain Challenges and Opportunities: A Survey. Work Pap (2016)Google Scholar
  8. 8.
    Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)Google Scholar
  9. 9.
    UK Government Chief Scientific Adviser: Distributed ledger technology: beyond block chain. Technical report, UK Government Office of Science (2016)Google Scholar
  10. 10.
    Hardjono, T., Pentland, A.S.: Verifiable Anonymous Identities and Access Control in Permissioned Blockchains (2016).
  11. 11.
    Gervais, A., Karame, G.O., Wüst, K., et al.: On the security and performance of proof of work blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 3–16. ACM (2016)Google Scholar
  12. 12.
    Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: OSDI, pp. 173–186 (1999)Google Scholar
  13. 13.
    Kotla, R., Alvisi, L., Dahlin, M.: SafeStore: a durable and practical storage system. In: USENIX Annual Technical Conference, Santa Clara, pp. 129–142 (2007)Google Scholar
  14. 14.
    Hu, Y., Chen, H.C., Lee, P.P., Tang, Y.: NCCloud: applying network coding for the storage repair in a cloud-of-clouds. In: Proceedings of the 10th USENIX Conference on File and Storage Technologies, San Jose, p. 21 (2012)Google Scholar
  15. 15.
    Bermbach, D., Klems, M., Tai, S., et al.: MetaStorage: a federated cloud storage system to manage consistency-latency tradeoffs. In: IEEE International Conference on Cloud Computing, pp. 452–459 (2011)Google Scholar
  16. 16.
    Wu, Z., Butkiewicz, M., Perkins, D., Katz-Bassett, E., Madhyastha, H.V.: SPANStore: cost-effective geo-replicated storage spanning multiple cloud services. In: Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP 2013), Farmington, pp. 292–308. ACM (2013)Google Scholar
  17. 17.
    Dobre, D., Viotti, P., Vukolić, M.: Hybris: robust hybrid cloud storage. In: Proceedings of the 2014 ACM Symposium on Cloud Computing (SoCC 2014), Seattle, pp. 1–14 (2014)Google Scholar
  18. 18.
    Li, M., Qin, C., Li, J., Lee, P.P.: CDStore: toward reliable, secure, and cost-efficient cloud storage via convergent dispersal. IEEE Internet Comput. 20(3), 45–53 (2016)CrossRefGoogle Scholar
  19. 19.
    Bessani, A., Correia, M., Quaresma, B., André, F., Sousa, P.: DepSky: dependable and secure storage in a cloud-of-clouds. ACM Trans. Storage (TOS) 9(4), 12 (2013)Google Scholar
  20. 20.
    Yao, X., Han, X., Du, X., Zhou, X.: A lightweight multicast authentication mechanism for small scale IoT applications. IEEE Sens. J. 13(10), 3693–3701 (2013)CrossRefGoogle Scholar
  21. 21.
    Du, X., Xiao, Y., Guizani, M., Chen, H.H.: An effective key management scheme for heterogeneous sensor networks. Ad Hoc Netw. 5(1), 24–34 (2007)CrossRefGoogle Scholar
  22. 22.
    Du, X., Guizani, M., Xiao, Y., Chen, H.H.: A routing-driven elliptic curve cryptography based key management scheme for heterogeneous sensor networks. IEEE Trans. Wirel. Commun. 8(3), 1223–1229 (2009)CrossRefGoogle Scholar
  23. 23.
    Du, X., Guizani, M., Shayman, M.: Implementation and performance analysis of SNMP on a TLS/TCP base. In: Proceedings of the Seventh IFIP/IEEE International Symposium on Integrated Network Management (IM 2001), Seattle, pp. 453–466. IEEE (2001)Google Scholar
  24. 24.
    Du, X., Chen, H.H.: Security in wireless sensor networks. IEEE Wirel. Commun. 15(4), 60–66 (2008)CrossRefGoogle Scholar
  25. 25.
    Liang, S., Du, X.: Permission-combination-based scheme for Android mobile malware detection. In: Proceedings of IEEE ICC 2014, Sydney, Australia (2014)Google Scholar
  26. 26.
    Shen, M., Ma, B., Zhu, L., Mijumbi, R., Du, X., Hu, J.: Cloud-based approximate constrained shortest distance queries over encrypted graphs with privacy protection. IEEE Trans. Inf. Forensics Secur. 13(4), 940–953 (2018)CrossRefGoogle Scholar
  27. 27.
    Douceur, J.R., Adya, A., Bolosky, W.J., Simon, P., Theimer, M.: Reclaiming space from duplicate files in a serverless distributed file system. In: Proceedings of 22nd International Conference on Distributed Computing Systems, pp. 617–624. IEEE (2002)Google Scholar
  28. 28.
    Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-locked encryption and secure deduplication. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 296–312. Springer, Heidelberg (2013). Scholar
  29. 29.
    Bellare, M., Keelveedhi, S., Ristenpart, T.: DupLESS: Server-Aided Encryption for Deduplicated Storage. IACR Cryptology ePrint Archive 2013, 429 (2013)Google Scholar
  30. 30.
    Liu, J., Asokan, N., Pinkas, B.: Secure deduplication of encrypted data without additional independent servers. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 874–885 (2015)Google Scholar
  31. 31.
    Armknecht, F., Bohli, J.M., Karame, G.O., Youssef, F.: Transparent data deduplication in the cloud. In: ACM SIGSAC Conference on Computer and Communications Security, pp. 886–900. ACM (2015)Google Scholar
  32. 32.

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  1. 1.Beijing Institute of TechnologyBeijingChina
  2. 2.China University of Political Science and LawBeijingChina
  3. 3.Temple UniversityPhiladelphiaUSA
  4. 4.Union Mobile Financial Technology Co., Ltd.BeijingChina

Personalised recommendations