A New Lightweight Mutual Authentication Protocol to Secure Real Time Tracking of Radioactive Sources

  • Mouza Ahmed Bani Shemaili
  • Chan Yeob YeunEmail author
  • Mohamed Jamal Zemerly
  • Khalid Mubarak
  • Hyun Ku Yeun
  • Yoon Seok Chang
  • Basim Zafar
  • Mohammed Simsim
  • Yasir Salih
  • Gaemyoung Lee
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 235)


Radioactive applications are employed in many aspects of our life, such as industry, medicine and agriculture. One of the most important issues that need to be addressed is the security of the movement of radioactive sources. There are many threats that may occur during the transportation of the radioactive sources from one place to another. This paper investigates the security issues in the transportation of the radioactive sources. Thus, it is an attempt to build a secure, real time freight tracking system in which the radioactive source can be under inspection and control at all times during transportation from the shipment provider to the end user. Thus, we proposed a novel lightweight mutual authentication protocol to be used for securing the transportation of radioactive materials. Also, the security requirements for the proposed protocol were verified using the Scyther tool.


Radioactive sources Cyber security, mutual authentication Scyther tool Real-time tracking 



The authors wish to acknowledge Information and Communication Technology Fund (ICT Fund) for the continued support for the educational development and research.


  1. 1.
    Radioactive Sources: Uses, Safety, and Security, Australian Nuclear Science and Technology Organization, August 2016.
  2. 2.
    Sheldon, F.T., Walker, R.M., Abercrombie, R.K., Cline, R.L.: Tracking radioactive sources in commerce. In: WM 2005 Conference, Tucson, AZ, USA, 27 February–3 March 2005Google Scholar
  3. 3.
    Security of radioactive sources Interim guidance for comment, Printed by the IAEA in Austria, August 2016.
  4. 4.
    Federal Authority for Nuclear Regulation, August 2016.
  5. 5.
    Ya-Anant, N., Tiyapun, K., Saiyut, K.: Radiological accident and incident in Thailand: lesson to be learned. Radiat. Prot. Dosim. 146(1–3), 111–114 (2011)CrossRefGoogle Scholar
  6. 6.
    Security in the Transport of Radioactive Material, IAEA nuclear security series No. 9, Vienna, August 2016.
  7. 7.
    Radiological Dispersal Device (RDD): Argonne National Laboratory, EVS, Human Health Fact Sheet, August 2005Google Scholar
  8. 8.
    Misra, P., Enge, P.: Global Positioning System: Signals, Measurements, and Performance, 2nd edn. Ganga-Jamun Press, Massachusetts (2010)Google Scholar
  9. 9.
    Schwieger, V.: Positioning within the GSM network. In: Proceedings on 6th FIG Regional Conference, San Jose, Costa Rica, 12–15 November 2007Google Scholar
  10. 10.
    Hunt, V., Puglia, A., Puglia, M.: RFID: A Guide to Radio Frequency Identification, 1st edn. Wiley, Hoboken (2007)CrossRefGoogle Scholar
  11. 11.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2012)CrossRefGoogle Scholar
  12. 12.
    Shemaili, M.B., Yeun, C.Y., Mubarak, K., Zemerly, M.J., Chang, Y.S.: Securing E-seal real time tracking system for internet of things. In: Proceedings of 8th International Conference on Internet Technology and Secured Transactions, 9–12 December 2013, London, UK, pp. 65–69 (2013)Google Scholar
  13. 13.
    Yeun, C.Y., Shemaili, M.A.B., Zemerly, M.J., Mubarak, K., Yeun, H.K., Chang, Y.S.: ID-based secure real-time tracking system. Int. J. Adv. Logist. 4(2), 100–114 (2015)CrossRefGoogle Scholar
  14. 14.
    Yeun, C.Y., Shemaili, M.A.B., Mubarak, K., Zemerly, M.J.: A new lightweight hybrid cryptographic algorithm for the internet of things. In: Proceedings of 7th International Conference on Internet Technology and Secured Transactions, 10–12 December 2012, London, UK, pp. 87–92 (2012)Google Scholar
  15. 15.
    Chien, H.Y.: SASI: a new ultra-lightweight RFID authentication protocol providing strong authentication and strong integrity. IEEE Trans. Dependable Secur. Comput. 4(4), 337–340 (2007)CrossRefGoogle Scholar
  16. 16.
    Peris-Lopez, P., Hernandez-Castro, J.C., Estevez-Tapiador, J., Ribagorda, A.: Cryptanalysis of a novel authentication protocol conforming to EPC-C1G2 standard. Comput. Stand. Interfaces 31(2), 372–380 (2009)CrossRefGoogle Scholar
  17. 17.
    Lo, N.W., Yeh, K.-H.: An Efficient Mutual Authentication Scheme for EPCglobal Class-1 Generation-2 RFID System. In: Denko, M.K., Shih, C.-s., Li, K.-C., Tsao, S.-L., Zeng, Q.-A., Park, S.H., Ko, Y.-B., Hung, S.-H., Park, J.H. (eds.) EUC 2007. LNCS, vol. 4809, pp. 43–56. Springer, Heidelberg (2007). Scholar
  18. 18.
    Chen, C.L., Deng, Y.Y.: Conformation of EPC class 1 generation 2 standards RFID system with mutual authentication and privacy protection. Eng. Appl. Artif. Intell. 22(8), 1284–1291 (2009)CrossRefGoogle Scholar
  19. 19.
    Habibi, M.H., Gardeshi, M., Alaghband, M.R.: Practical attacks on a RFID authentication protocol conforming to EPC C-1 G-2 standard. J. Ubicomp 2(1), 1–13 (2011)CrossRefGoogle Scholar
  20. 20.
    Yeh, T.C., Wang, Y.J., Kuo, T.C., Wang, S.S.: Securing RFID systems conforming to EPC class 1 generation 2 standard. Expert Syst. Appl. 37(12), 7678–7683 (2010)CrossRefGoogle Scholar
  21. 21.
    Safkhani, M., Bagheri, N., Sanadhya, S.K., Naderi, M.: Cryptanalysis of improved Yeh et al.’s authentication protocol: an EPC class-1 generation-2 standard compliant protocol, IACR Cryptology ePrint Archive, Report. 2011/ 426 (2011)Google Scholar
  22. 22.
    Yoon, E.J.: Improvement of the securing RFID systems conforming to EPC class 1 generation 2 standard. Expert Syst. Appl. 39(12), 1589–1594 (2012)CrossRefGoogle Scholar
  23. 23.
    Mohammadali, A., Ahmadian, Z., Aref, M.R.: Analysis and improvement of the securing RFID systems conforming to EPC class 1 generation 2 standard, IACR Cryptology ePrint Archive, pp. 66–76 (2013)Google Scholar
  24. 24.
    Cremers, C.J.F.: The Scyther tool: verification, falsification, and analysis of security protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418. Springer, Heidelberg (2008)., Scholar
  25. 25.
    Cremers, C., Mauw, S., de Vink, E.: Injective synchronisation: an extension of the authentication hierarchy. Theor. Comput. Sci. 367(10), 139–161 (2006). Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981)MathSciNetCrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  • Mouza Ahmed Bani Shemaili
    • 1
  • Chan Yeob Yeun
    • 2
    Email author
  • Mohamed Jamal Zemerly
    • 2
  • Khalid Mubarak
    • 1
  • Hyun Ku Yeun
    • 1
  • Yoon Seok Chang
    • 3
  • Basim Zafar
    • 4
  • Mohammed Simsim
    • 6
  • Yasir Salih
    • 4
  • Gaemyoung Lee
    • 5
  1. 1.Computer Information and Science DivisionHCTAbu DhabiUAE
  2. 2.Department of Electrical and Computer EngineeringKhalifa UniversityAbu DhabiUAE
  3. 3.School of Air Transportation and LogisticsKorea Aerospace UniversityGoyangKorea
  4. 4.Department of Electrical EngineeringUmm Al-Qura University, KSUMeccaSaudi Arabia
  5. 5.College of EngineeringJeju National UniversityJejuKorea
  6. 6.Ministry of Hajj, KSUMeccaSaudi Arabia

Personalised recommendations