Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor. 15(3), 1192–1209 (2013)
CrossRef
Google Scholar
Könönen, V., Mäntyjärvi, J., Similä, H., Pärkkä, J., Ermes, M.: Automatic feature selection for context recognition in mobile devices. Pervasive Mob. Comput. 6(2), 181–197 (2010)
CrossRef
Google Scholar
Fahim, M., Fatima, I., Lee, S., Park, Y.-T.: EFM: evolutionary fuzzy model for dynamic activities recognition using a smartphone accelerometer. Appl. Intell. 39(3), 475–488 (2013)
CrossRef
Google Scholar
Dernbach, S., Das, B., Krishnan, N.C., Thomas, B.L., Cook, D.J.: Simple and complex activity recognition through smart phones. In: 2012 8th International Conference on Intelligent Environments (IE), pp. 214–221. IEEE (2012)
Google Scholar
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)
CrossRef
Google Scholar
Shoaib, M., Scholten, H., Havinga, P.: Towards physical activity recognition using smartphone sensors. In: Ubiquitous Intelligence and Computing, 2013 IEEE 10th International Conference on and 10th International Conference on Autonomic and Trusted Computing (UIC/ATC), pp. 80–87, December 2013
Google Scholar
Shoaib, M., Bosch, S., Incel, O.D., Scholten, H., Havinga, P.J.: Fusion of smartphone motion sensors for physical activity recognition. Sensors 14(6), 10146–10176 (2014)
CrossRef
Google Scholar
Wu, W., Dasgupta, S., Ramirez, E.E., Peterson, C., Norman, G.J.: Classification accuracies of physical activities using smartphone motion sensors. J. Med. Internet Res. 14(5), e130 (2012)
CrossRef
Google Scholar
Kose, M., Incel, O.D., Ersoy, C.: Online human activity recognition on smart phones. In: Workshop on Mobile Sensing: From Smartphones and Wearables to Big Data, vol. 16, no. 2012, pp. 11–15 (2012)
Google Scholar
Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. MIT Press, Cambridge (2012)
MATH
Google Scholar
Shoaib, M., Bosch, S., Incel, O.D., Scholten, H., Havinga, P.J.: A survey of online activity recognition using mobile phones. Sensors 15(1), 2059–2085 (2015)
CrossRef
Google Scholar
Rawassizadeh, R., Tomitsch, M., Nourizadeh, M., Momeni, E., Peery, A., Ulanova, L., Pazzani, M.: Energy-efficient integration of continuous context sensing and prediction into smartwatches. Sensors 15(9), 22616–22645 (2015)
CrossRef
Google Scholar
Poyraz, E., Memik, G.: Analyzing power consumption and characterizing user activities on smartwatches: summary. In: IEEE International Symposium on Workload Characterization (IISWC), pp. 1–2, September 2016
Google Scholar
Liu, X., Chen, T., Qian, F., Guo, Z., Lin, F.X., Wang, X., Chen, K.: Characterizing smartwatch usage in the wild. In: Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services, MobiSys 2017, pp. 385–398. ACM, New York (2017)
Google Scholar
Shoaib, M., Bosch, S., Incel, O.D., Scholten, H., Havinga, P.J.: Complex human activity recognition using smartphone and wrist-worn motion sensors. Sensors 16(4), 426 (2016)
CrossRef
Google Scholar
Shoaib, M., Scholten, H., Havinga, P.J., Incel, O.D.: A hierarchical lazy smoking detection algorithm using smartwatch sensors. In: IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), pp. 1–6. IEEE (2016)
Google Scholar
Shoaib, M.: Sitting is the new smoking: online complex human activity recognition with smartphones and wearables. Ph.D. dissertation, cTIT Ph.D. thesis series no. 17–436, May 2017
Google Scholar
Tang, Q., Vidrine, D.J., Crowder, E., Intille, S.S.: Automated detection of puffing and smoking with wrist accelerometers. In: Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare, pp. 80–87. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2014)
Google Scholar
Chen, G., Ding, X., Huang, K., Ye, X., Zhang, C.: Changing health behaviors through social and physical context awareness. In: 2015 International Conference on Computing, Networking and Communications (ICNC), pp. 663–667. IEEE (2015)
Google Scholar
Shoaib, M., Incel, O.D., Scholten, H., Havinga, P.J.: Resource consumption analysis of online activity recognition on mobile phones and smartwatches. In: Proceedings of the 36th IEEE International Performance Computing and Communications Conference. IEEE, 10–12 December 2017
Google Scholar
Incel, O.D., Kose, M., Ersoy, C.: A review and taxonomy of activity recognition on mobile phones. BioNanoScience 3(2), 145–171 (2013)
CrossRef
Google Scholar
Gjoreski, M., Gjoreski, H., Luštrek, M., Gams, M.: How accurately can your wrist device recognize daily activities and detect falls? Sensors 16(6), 800 (2016)
CrossRef
Google Scholar
Gjoreski, M., Gjoreski, H., Luštrek, M., Gams, M.: Recognizing atomic activities with wrist-worn accelerometer using machine learning. In: Proceedings of the 18th International Multiconference Information Society (IS), Ljubljana, Slovenia, pp. 10–11 (2015)
Google Scholar
Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015)
CrossRef
Google Scholar
Garcia-Ceja, E., Brena, R.F., Carrasco-Jimenez, J.C., Garrido, L.: Long-term activity recognition from wristwatch accelerometer data. Sensors 14(12), 22500–22524 (2014)
CrossRef
Google Scholar
Knighten, J., McMillan, S., Chambers, T., Payton, J.: Recognizing social gestures with a wrist-worn smartband. In: 2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 544–549. IEEE (2015)
Google Scholar
Documentation for Google activity recognition API. http://developer.android.com/training/location/activity-recognition.html. Accessed 21 July 2014
Seneviratne, S., Hu, Y., Nguyen, T., Lan, G., Khalifa, S., Thilakarathna, K., Hassan, M., Seneviratne, A.: A survey of wearable devices and challenges. IEEE Commun. Surv. Tutor. 19(4), 2573–2620 (2017)
CrossRef
Google Scholar
Scholl, P.M., Van Laerhoven, K.: A feasibility study of wrist-worn accelerometer based detection of smoking habits. In: 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), pp. 886–891. IEEE (2012)
Google Scholar
Varkey, J.P., Pompili, D., Walls, T.A.: Human motion recognition using a wireless sensor-based wearable system. Pers. Ubiquit. Comput. 16(7), 897–910 (2012)
CrossRef
Google Scholar
Saleheen, N., Ali, A.A., Hossain, S.M., Sarker, H., Chatterjee, S., Marlin, B., Ertin, E., al’Absi, M., Kumar, S.: puffMarker: a multi-sensor approach for pinpointing the timing of first lapse in smoking cessation. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 999–1010. ACM (2015)
Google Scholar
Parate, A., Chiu, M.-C., Chadowitz, C., Ganesan, D., Kalogerakis, E.: RisQ: recognizing smoking gestures with inertial sensors on a wristband. In: Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services, pp. 149–161. ACM (2014)
Google Scholar
https://weka.wikispaces.com/Serialization. Accessed Dec 2017
https://weka.wikispaces.com/Primer. Accessed Dec 2017