Bulling, A., Blanke, U., Schiele, B.: A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput. Surv. (CSUR) 46(3), 33 (2014)
CrossRef
Google Scholar
Ortiz, J.L.R., Oneto, L., Samá, A., Parra, X., Anguit, D.: Transition-aware human activity recognition using smartphones. Neurocomputing 171(C), 754–767 (2016)
CrossRef
Google Scholar
Ren, Z., Meng, J., Yuan, J., Zhantg, Z.: Robust hand gesture recognition with kinect sensor. In: Proceedings of 19th ACM International Conference on Multimedia, pp. 759–760 (2011)
Google Scholar
Ren, Z., Yuan, J., Zhang, Z.: Robust hand gesture recognition based on finger-earth mover’s distance with a commodity depth camera. In: Proceedings of 19th ACM International Conference on Multimedia, pp. 1093–1096 (2011)
Google Scholar
Kuwahara, N., Kogure, K., Ohmura, A., Noma, H.: Wearable sensors for auto-event-recording on medical nursing - user study of ergonomic design. In: 2012 16th International Symposium on Wearable Computers, pp. 8–15 (2004)
Google Scholar
Westerfield, G., Mitrovic, A., Billinghurst, M.: Intelligent augmented reality training for motherboard assembly. Int. J. Artif. Intell. Educ. 25(1), 157–172 (2015)
CrossRef
Google Scholar
Radkowski, R., Herrema, J., Oliver, J.: Augmented reality-based manual assembly support with visual features for different degrees of difficulty. Ind. Prod. Eng. 34(5), 362–374 (2015)
Google Scholar
Johnson, W., Jellinek, H., Klotz Jr., L., Rao, R., Card, S.: Bridging the paper and electronic worlds. In: Proceedings of INTERACT 1993 and CHI 1993 Conference on Human Factors in Computing Systems, pp. 507–512 (1993)
Google Scholar
Bayar, G.: The use of hough transform to develop an intelligent grading system for the multiple choice exam papers. Proc. Karaelmas Sci. Eng. 6(1), 100–104 (2016)
Google Scholar
Benedito, J.L.P., Aragón, E.Q., Alriols, J.A., Medic, L.: Optical mark recognition in student continuous assessment. IEEE Rev. Iberoam. de Tecnol. del Aprendiz. 9(4), 133–138 (2014)
Google Scholar
Atasoy, H., Yildirim, E., Kutlu, Y., Tohma, K.: Webcam based real-time robust optical mark recognition. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9490, pp. 449–456. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26535-3_51
CrossRef
Google Scholar
Koile, K., Chevalier, K., Low, C., Pal, S., Rogal, A., Singer, D., Sorensen, J., Tay, K.S., Wu, K.: Supporting pen-based classroom interaction: new findings and functionality for classroom learning partner. In: Proceedings of International Workshop on Pen-Based Learning Technologies (PLT 2007), pp. 1–7 (2007)
Google Scholar
Koile, K., Chevalier, K., Rbeiz, M., Rogal, A., Singer, D., Sorensen, J., Smith, A., Tay, K.S., Wu, K.: Supporting feedback and assessment of digital ink answers to in-class exercises. In: Proceedings of 22nd National Conference on Artificial Intelligence, pp. 1787–1794 (2007)
Google Scholar
Tay, K.S., Koile, K.: Improving digital ink interpretation through expected type prediction and dynamic dispatch. In: Proceedings of 19th International Conference on Pattern Recognition, pp. 1–4 (2008)
Google Scholar
Edwards, S.: Work-in-progress: program grading and feedback generation with web-CAT. In: Proceedings of 1st ACM Conference on Learning@ Scale Conference, pp. 215–216 (2014)
Google Scholar
Caiza, J., Alamo, J.M.D.: Programming assignments automatic grading: review of tools and implementations. In: Proceedings of 7th International Technology, Education and Development Conference (INTED 2013), pp. 5691–5700 (2013)
Google Scholar
Yamamoto, M., Umemura, N., Kawano, H.: Automated essay scoring system based on rubric. In: Lee, R. (ed.) ACIT 2017. Studies in Computational Intelligence, vol. 727, pp. 177–190. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-64051-8_11
CrossRef
Google Scholar
Liu, M., Li, Y., Xu, W., Liu, L.: Automated essay feedback generation and its impact in the revision. IEEE Trans. Learn. Technol. PP(99), 1 (2016)
Google Scholar
Nguyen, D.M., Hsieh, J., Allen, G.D.: The impact of web-based assessment and practice on students’ mathematics learning attitudes. Math. Sci. Teach. 25(3), 251–279 (2006)
Google Scholar
Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_34
CrossRef
Google Scholar
Amma, C., Georgi, M., Schultz, T.: Airwriting: a wearable handwriting recognition system. Pers. Ubiquit. Comput. 18(1), 191–203 (2014)
CrossRef
Google Scholar
Ahmad, A.R., Khalia, M., Gaudin, C.V., Poisson, E.: Online handwriting recognition using support vector machine. In: Proceedings of 2004 IEEE Region 10 Conference TENCON 2004, vol. 1, pp. 311–314 (2004)
Google Scholar
Doetsch, P., Kozielski, M., Ney, H.: Fast and robust training of recurrent neural networks for offline handwriting recognition. In: Proceedings of 2014 14th International Conference on Frontiers in Handwriting Recognition, pp. 279–284 (2014)
Google Scholar
Suen, C.Y., Tan, J.: Analysis of errors of handwritten digits made by a multitude of classifiers. Pattern Recogn. Lett. 26(3), 369–379 (2005)
CrossRef
Google Scholar