Skip to main content

Role of Heat Shock Proteins in Oxidative Stress and Stress Tolerance

  • Chapter
  • First Online:
Heat Shock Proteins and Stress

Part of the book series: Heat Shock Proteins ((HESP,volume 15))

Abstract

Heat shock proteins (HSP) also referred to as stress proteins are a family of proteins produced by cells in response to exposure to stressful conditions like heat, cold, different kinds of environmental stress, such as infection, inflammation, exercise, exposure of the cell to toxins (ethanol, arsenic, trace metals, and UV light, among many others), starvation, hypoxia (oxygen deprivation), nitrogen deficiency (in plants), water deprivation and during wound healing or tissue remodeling. In this review, the authors have elucidated the role of heat shock proteins in stress tolerance both in eukaryotes and prokaryotes. Here, the role of heat shock proteins in survival during more extreme conditions and maintenance of normal cellular homeostasis have also been briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abele D, Tesch C, Wencke P, Pörtner HO (2001) How does oxidative stress relate to thermal tolerance in the Antarctic bivalve Yoldia eightsi? Antarct Sci 13:111–118

    Article  Google Scholar 

  • Ahn Y-J, Song N-H (2012) A cytosolic heat shock protein expressed in carrot (Daucus carota L.) enhances cell viability under oxidative and osmotic stress conditions. Hortscience 47:143–148

    CAS  Google Scholar 

  • Ahn Y-J, Claussen K, Zimmerman JL (2004) Genotypic differences in the heat-shock response and thermotolerance in four potato cultivars. Plant Sci 166:901–911

    Article  CAS  Google Scholar 

  • Amin J, Ananthan J, Voellmy R (1988) Key features of heat shock regulatory elements. Mol Cell Biol 8:3761–3769

    Article  CAS  Google Scholar 

  • Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10

    Article  Google Scholar 

  • Arrigo A-P (1994) Expression and function of the low-molecular-weight heat shock proteins. The biology of heat shock proteins and molecular chaperones, 335–373

    Google Scholar 

  • Bakthisaran R, Tangirala R, Rao CM (2015) Small heat shock proteins: role in cellular functions and pathology. Biochim Biophys Acta Proteins Proteomics 1854:291–319

    Article  CAS  Google Scholar 

  • Basu N, Todgham A, Ackerman P, Bibeau M, Nakano K, Schulte P, Iwama GK (2002) Heat shock protein genes and their functional significance in fish. Gene 295:173–183

    Article  CAS  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424

    Article  CAS  Google Scholar 

  • Brownell SE, Becker RA, Steinman L (2012) The protective and therapeutic function of small heat shock proteins in neurological diseases. Front Immunol 3:74

    Article  Google Scholar 

  • Cai SY, Zhang Y, Xu YP, Qi ZY, Li MQ, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Reiter RJ (2017) HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants. J Pineal Res 62

    Article  Google Scholar 

  • Castegna A, Aksenov M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA (2002) Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part II: dihydropyrimidinase-related protein 2, α-enolase and heat shock cognate 71. J Neurochem 82:1524–1532

    Article  CAS  Google Scholar 

  • Chai Y, Koppenhafer SL, Bonini NM, Paulson HL (1999) Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J Neurosci 19:10338–10347

    Article  CAS  Google Scholar 

  • Christman MF, Morgan RW, Jacobson FS, Ames BN (1985) Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in salmonella typhimurium. Cell 41:753–762

    Article  CAS  Google Scholar 

  • Cruz T, Kandel R, Brown I (1991) Interleukin 1 induces the expression of a heat-shock gene in chondrocytes. Biochem J 277:327–330

    Article  CAS  Google Scholar 

  • Cummings CJ, Sun Y, Opal P, Antalffy B, Mestril R, Orr HT, Dillmann WH, Zoghbi HY (2001) Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 10:1511–1518

    Article  CAS  Google Scholar 

  • Di Domenico F, Sultana R, Tiu GF, Scheff NN, Perluigi M, Cini C, Butterfield DA (2010) Protein levels of heat shock proteins 27, 32, 60, 70, 90 and thioredoxin-1 in amnestic mild cognitive impairment: an investigation on the role of cellular stress response in the progression of Alzheimer disease. Brain Res 1333:72–81

    Article  Google Scholar 

  • Ding Q, Keller JN (2001) Proteasome inhibition in oxidative stress neurotoxicity: implications for heat shock proteins. J Neurochem 77:1010–1017

    Article  CAS  Google Scholar 

  • Driedonks N, Xu J, Peters JL, Park S, Rieu I (2015) Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Front Plant Sci 6

    Google Scholar 

  • Dwivedi V, Lakhotia SC (2016) Ayurvedic Amalaki Rasayana promotes improved stress tolerance and thus has anti-aging effects in Drosophila melanogaster. J Biosci 41:697–711

    Article  CAS  Google Scholar 

  • Dwivedi V, Anandan E, Mony RS, Muraleedharan T, Valiathan M, Mutsuddi M, Lakhotia SC (2012) In vivo effects of traditional Ayurvedic formulations in Drosophila melanogaster model relate with therapeutic applications. PLoS One 7:e37113

    Article  CAS  Google Scholar 

  • Feige, U., Morimoto, R.I., Polla, B. (2013) Stress-inducible cellular responses. Birkhäuser

    Google Scholar 

  • Friedlander RM (2003) Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 348:1365–1375

    Article  CAS  Google Scholar 

  • Fu C, Liu X, Yang W, Zhao C, Liu J (2016) Enhanced salt tolerance in tomato plants constitutively expressing heat-shock protein in the endoplasmic reticulum. Genet Mol Res 15

    Google Scholar 

  • Golenhofen N, Redel A, Wawrousek E, Drenckhahn D (2006) Ischemia-induced increase of stiffness of αB-crystallin/HSPB2-deficient myocardium. Pflugers Arch 451:518–525

    Article  CAS  Google Scholar 

  • González K, Gaitán-Espitia J, Font A, Cárdenas CA, González-Aravena M (2016) Expression pattern of heat shock proteins during acute thermal stress in the Antarctic Sea urchin, Sterechinus neumayeri. Rev Chil Hist Nat 89:2

    Article  Google Scholar 

  • Guzhova IV, Arnholdt AC, Darieva ZA, Kinev AV, Lasunskaia EB, Nilsson K, Bozhkov VM, Voronin AP, Margulis BA (1998) Effects of exogenous stress protein 70 on the functional properties of human promonocytes through binding to cell surface and internationalization. Cell Stress Chaperones 3:67

    Article  CAS  Google Scholar 

  • Hao X, Zhang S, Timakov B, Zhang P (2007) The Hsp27 gene is not required for drosophila development but its activity is associated with starvation resistance. Cell Stress Chaperones 12:364–372

    Article  CAS  Google Scholar 

  • Heckathorn SA, Downs CA, Sharkey TD, Coleman JS (1998) The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress. Plant Physiol 116:439–444

    Article  CAS  Google Scholar 

  • Hossain MA, Li Z-G, Hoque TS, Burritt DJ, Fujita M, Munné-Bosch S (2017) Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms. Protoplasma:1–14

    Google Scholar 

  • Huang Y-C, Niu C-Y, Yang C-R, Jinn T-L (2016) The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiol 172:1182–1199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iryani MTM, MacRae TH, Panchakshari S, Tan J, Bossier P, Wahid MEA, Sung YY (2017) Knockdown of heat shock protein 70 (Hsp70) by RNAi reduces the tolerance of Artemia franciscana nauplii to heat and bacterial infection. J Exp Mar Biol Ecol 487:106–112

    Article  CAS  Google Scholar 

  • Jacob P, Hirt H, Bendahmane A (2016) The heat shock protein/chaperone network and multiple stress resistance. Plant Biotechnol J

    Google Scholar 

  • Johnson AD, Berberian PA, Bond MG (1990) Effect of heat shock proteins on survival of isolated aortic cells from normal and atherosclerotic cynomolgus macaques. Atherosclerosis 84:111–119

    Article  CAS  Google Scholar 

  • Johnson AD, Berberian PA, Tytell M, Bond MG (1995) Differential distribution of 70-kD heat shock protein in atherosclerosis. Arterioscler Thromb Vasc Biol 15:27–36

    Article  CAS  Google Scholar 

  • Junprung W, Supungul P, Tassanakajon A (2017) HSP70 and HSP90 are involved in shrimp Penaeus vannamei tolerance to AHPND-causing strain of Vibrio parahaemolyticus after non-lethal heat shock. Fish Shellfish Immunol 60:237–246

    Article  CAS  Google Scholar 

  • Kim H, Ahn Y-J (2009) Expression of a gene encoding the carrot HSP17. 7 in Escherichia coli enhances cell viability and protein solubility under heat stress. Hortscience 44:866–869

    Google Scholar 

  • Kregel KC (2002) Invited review: heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186

    Article  CAS  Google Scholar 

  • Kurino C, Furuhashi T, Sudoh K, Sakamoto K (2017) Isoamyl alcohol odor promotes longevity and stress tolerance via DAF-16 in Caenorhabditis elegans. Biochem Biophys Res Commun 485:395–399

    Article  CAS  Google Scholar 

  • Kuzmin EV, Karpova OV, Elthon TE, Newton KJ (2004) Mitochondrial respiratory deficiencies signal up-regulation of genes for heat shock proteins. J Biol Chem 279:20672–20677

    Article  CAS  Google Scholar 

  • Lee S-H, Lee K-W, Lee D-G, Son D, Park SJ, Kim K-Y, Park HS, Cha J-Y (2015) Identification and functional characterization of Siberian wild rye (Elymus sibiricus L.) small heat shock protein 16.9 gene (EsHsp16. 9) conferring diverse stress tolerance in prokaryotic cells. Biotechnol Lett 37:881–890

    Article  CAS  Google Scholar 

  • Li Z, Menoret A, Srivastava P (2002) Roles of heat-shock proteins in antigen presentation and cross-presentation. Curr Opin Immunol 14:45–51

    Article  CAS  Google Scholar 

  • Li Z, Long R, Zhang T, Wang Z, Zhang F, Yang Q, Kang J, Sun Y (2017) Molecular cloning and functional analysis of the drought tolerance gene MsHSP70 from alfalfa (Medicago sativa L.). J Plant Res 130:387–396

    Article  CAS  Google Scholar 

  • Lindquist S, Craig E (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  Google Scholar 

  • Liu X-d, Thiele DJ (1996) Oxidative stress induced heat shock factor phosphorylation and HSF-dependent activation of yeast metallothionein gene transcription. Genes Dev 10:592–603

    Article  CAS  Google Scholar 

  • Liu C, Fu J, Xu F, Wang X, Li S (2015) The role of heat shock proteins in oxidative stress damage induced by se deficiency in chicken livers. Biometals 28:163–173

    Article  Google Scholar 

  • Liu Y, Ma D, Zhao C, Xiao Z, Xu S, Xiao Y, Wang Y, Liu Q, Li J (2017) The expression pattern of hsp70 plays a critical role in thermal tolerance of marine demersal fish: multilevel responses of Paralichthys olivaceus and its hybrids (P. Olivaceus♀× P. Dentatus♂) to chronic and acute heat stress. Mar Environ Res 129:386–395

    Article  CAS  Google Scholar 

  • Lüders J, Demand J, Höhfeld J (2000) The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem 275:4613–4617

    Article  Google Scholar 

  • Mahanty A, Purohit GK, Yadav RP, Mohanty S, Mohanty BP (2017) hsp90 and hsp47 appear to play an important role in minnow Puntiussophore for surviving in the hot spring run-off aquatic ecosystem. Fish Physiol Biochem 43:89–102

    Article  CAS  Google Scholar 

  • Malik MK, Slovin JP, Hwang CH, Zimmerman JL (1999) Modified expression of a carrot small heat shock protein gene, Hsp17. 7, results in increased or decreased thermotolerance. Plant J 20:89–99

    Article  CAS  Google Scholar 

  • Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1:120

    Article  CAS  Google Scholar 

  • Mc Naughton L, Lovell R, Madden L (2006) Heat shock proteins in exercise: a review. J Exerc Sci Physiother 2:13

    Google Scholar 

  • Melvin P, Bankapalli K, D’Silva P, Shivaprasad P (2017) Methylglyoxal detoxification by a DJ-1 family protein provides dual abiotic and biotic stress tolerance in transgenic plants. Plant Mol Biol:1–17

    Google Scholar 

  • Mittler R, Kim Y, Song L, Coutu J, Coutu A, Ciftci-Yilmaz S, Lee H, Stevenson B, Zhu J-K (2006) Gain-and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Lett 580:6537–6542

    Article  CAS  Google Scholar 

  • Moraitis C, Curran BP (2004) Reactive oxygen species may influence the heat shock response and stress tolerance in the yeast Saccharomyces cerevisiae. Yeast 21:313–323

    Article  CAS  Google Scholar 

  • Morimoto RI, Santoro MG (1998) Stress–inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat Biotechnol 16:833–838

    Article  CAS  Google Scholar 

  • Morrison LE, Whittaker RJ, Klepper RE, Wawrousek EF, Glembotski CC (2004) Roles for αB-crystallin and HSPB2 in protecting the myocardium from ischemia-reperfusion-induced damage in a KO mouse model. Am J Phys Heart Circ Phys 286:H847–H855

    CAS  Google Scholar 

  • Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11

    Article  CAS  Google Scholar 

  • Mymrikov EV, Seit-Nebi AS, Gusev NB (2011) Large potentials of small heat shock proteins. Physiol Rev 91:1123–1159

    Article  CAS  Google Scholar 

  • Najarzadegan M, Ataei E, Akbarzadeh F (2016) The role of heat shock proteins in Alzheimer disease: a systematic review. J Syndr 3:6

    Google Scholar 

  • Nakai A, Tanabe M, Kawazoe Y, Inazawa J, Morimoto RI, Nagata K (1997) HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol Cell Biol 17:469–481

    Article  CAS  Google Scholar 

  • Neta-Sharir I, Isaacson T, Lurie S, Weiss D (2005) Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17:1829–1838

    Article  CAS  Google Scholar 

  • Nguyen XC, Hoang MHT, Kim HS, Lee K, Liu X-M, Kim SH, Bahk S, Park HC, Chung WS (2012) Phosphorylation of the transcriptional regulator MYB44 by mitogen activated protein kinase regulates Arabidopsis seed germination. Biochem Biophys Res Commun 423:703–708

    Article  CAS  Google Scholar 

  • Padmini E, Rani MU (2011) Heat-shock protein 90 alpha (HSP90α) modulates signaling pathways towards tolerance of oxidative stress and enhanced survival of hepatocytes of Mugil cephalus. Cell Stress Chaperones 16:411–425

    Article  CAS  Google Scholar 

  • Pandey A, Saini S, Khatoon R, Sharma D, Narayan G, Chowdhuri DK (2016) Overexpression of hsp27 rescued neuronal cell death and reduction in life-and health-span in drosophila melanogaster against prolonged exposure to dichlorvos. Mol Neurobiol 53:3179–3193

    Article  CAS  Google Scholar 

  • Pérez-Salamó I, Papdi C, Rigó G, Zsigmond L, Vilela B, Lumbreras V, Nagy I, Horváth B, Domoki M, Darula Z (2014) The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6. Plant Physiol 165:319–334

    Article  Google Scholar 

  • Perisic O, Xiao H, Lis JT (1989) Stable binding of drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell 59:797–806

    Article  CAS  Google Scholar 

  • Pirkkala L, Sistonen L (2001) Heat shock proteins (HSPs): structure, function and genetics. eLS

    Google Scholar 

  • Pörtner H (2001) Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88:137–146

    Article  Google Scholar 

  • Rajkumar U, Vinoth A, Rajaravindra K, Shanmugham M, Rao S (2015) Effect of in ovo inoculation of vitamin E on expression of Hsp-70 m RNA and juvenile growth in coloured broiler chicken. Indian J Poult Sci 50:104–108

    Google Scholar 

  • Rauchova H, Vokurkova M, Koudelova J (2012) Hypoxia-induced lipid peroxidation in the brain during postnatal ontogenesis. Physiol Res 61:S89

    CAS  PubMed  Google Scholar 

  • Ray PS, Martin JL, Swanson EA, Otani H, Dillmann WH, Das DK (2001) Transgene overexpression of αB crystallin confers simultaneous protection against cardiomyocyte apoptosis and necrosis during myocardial ischemia and reperfusion. FASEB J 15:393–402

    Article  CAS  Google Scholar 

  • Ritossa F (1964) Experimental activation of specific loci in polytene chromosomes of drosophila. Exp Cell Res 35:601–607

    Article  CAS  Google Scholar 

  • Robinson MB, Tidwell JL, Gould T, Taylor AR, Newbern JM, Graves J, Tytell M, Milligan CE (2005) Extracellular heat shock protein 70: a critical component for motoneuron survival. J Neurosci 25:9735–9745

    Article  CAS  Google Scholar 

  • Russo A, Palumbo M, Scifo C, Cardile V, Barcellona M, Renis M (2001) Ethanol-induced oxidative stress in rat astrocytes: role of HSP70. Cell Biol Toxicol 17:153–168

    Article  CAS  Google Scholar 

  • Sakthivel K, Watanabe T, Nakamoto H (2009) A small heat-shock protein confers stress tolerance and stabilizes thylakoid membrane proteins in cyanobacteria under oxidative stress. Arch Microbiol 191:319–328

    Article  CAS  Google Scholar 

  • Santoro MG (2000) Heat shock factors and the control of the stress response. Biochem Pharmacol 59:55–63

    Article  CAS  Google Scholar 

  • Schuetz TJ, Gallo GJ, Sheldon L, Tempst P, Kingston RE (1991) Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc Natl Acad Sci 88:6911–6915

    Article  CAS  Google Scholar 

  • Sedaghatmehr M, Mueller-Roeber B, Balazadeh S (2016) The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis. Nat Commun 7:12439

    Article  CAS  Google Scholar 

  • Shi Y, Nishida K, Di Giammartino DC, Manley JL (2011) Heat shock-induced SRSF10 dephosphorylation displays thermotolerance mediated by Hsp27. Mol Cell Biol 31:458–465

    Article  CAS  Google Scholar 

  • Sistonen L, Sarge K, Phillips B, Abravaya K, Morimoto R (1992) Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol Cell Biol 12:4104–4111

    Article  CAS  Google Scholar 

  • Song N-H, Ahn Y-J (2010) DcHsp17. 7, a small heat shock protein from carrot, is upregulated under cold stress and enhances cold tolerance by functioning as a molecular chaperone. Hortscience 45:469–474

    Google Scholar 

  • Song N-H, Ahn Y-J (2011) DcHsp17. 7, a small heat shock protein in carrot, is tissue-specifically expressed under salt stress and confers tolerance to salinity. New Biotechnol 28:698–704

    Article  CAS  Google Scholar 

  • Song C, Chung WS, Lim CO (2016) Overexpression of heat shock factor gene HsfA3 increases Galactinol levels and oxidative stress tolerance in Arabidopsis. Mol Cells 39:477

    Article  CAS  Google Scholar 

  • Sørensen JG (2010) Application of heat shock protein expression for detecting natural adaptation and exposure to stress in natural populations. Curr Zool 56:703–713

    Google Scholar 

  • Sun Y, MacRae TH (2005) The small heat shock proteins and their role in human disease. FEBS J 272:2613–2627

    Article  CAS  Google Scholar 

  • Suzuki K, Sawa Y, Kaneda Y, Ichikawa H, Shirakura R, Matsuda H (1997) In vivo gene transfection with heat shock protein 70 enhances myocardial tolerance to ischemia-reperfusion injury in rat. J Clin Investig 99:1645

    Article  CAS  Google Scholar 

  • Tanabe M, Kawazoe Y, Takeda S, Morimoto RI, Nagata K, Nakai A (1998) Disruption of the HSF3 gene results in the severe reduction of heat shock gene expression and loss of thermotolerance. EMBO J 17:1750–1758

    Article  CAS  Google Scholar 

  • Tidwell JL, Houenou LJ, Tytell M (2004) Administration of Hsp70 in vivo inhibits motor and sensory neuron degeneration. Cell Stress Chaperones 9:88–98

    Article  CAS  Google Scholar 

  • Tiwari S, Thakur R, Shankar J (2015) Role of heat-shock proteins in cellular function and in the biology of fungi. Biotechnol Res Int 2015:1

    Article  Google Scholar 

  • Tóth ME, Gombos I, Sántha M (2015) Heat shock proteins and their role in human diseases. Acta Biol Szeged 59:121–141

    Google Scholar 

  • Tytell M, Greenberg S, Lasek R (1986) Heat shock-like protein is transferred from glia to axon. Brain Res 363:161–164

    Article  CAS  Google Scholar 

  • Umapathy D, Krishnamoorthy E, Muthukumaran P, Rajaram R, Padmalayam I, Viswanathan V (2012) Association of A1538G and C2437T single nucleotide polymorphisms in heat shock protein 70 genes with type 2 diabetes. Lab Med 43:250–255

    Article  Google Scholar 

  • Usman MG, Rafii M, Ismail M, Malek M, Latif MA, Oladosu Y (2014) Heat shock proteins: functions and response against heat stress in plants. Int J Sci Technol Res 3:204–218

    Google Scholar 

  • Wang H-D, Kazemi-Esfarjani P, Benzer S (2004) Multiple-stress analysis for isolation of drosophila longevity genes. Proc Natl Acad Sci U S A 101:12610–12615

    Article  CAS  Google Scholar 

  • Wang M, Zou Z, Li Q, Sun K, Chen X, Li X (2017) The CsHSP17. 2 molecular chaperone is essential for thermotolerance in Camellia sinensis. Sci Rep 7:1237

    Article  Google Scholar 

  • Warrick JM, Chan HE, Gray-Board GL, Chai Y, Paulson HL, Bonini NM (1999) Suppression of polyglutamine-mediated neurodegeneration in drosophila by the molecular chaperone HSP70. Nat Genet 23:425–428

    Article  CAS  Google Scholar 

  • Whitley D, Goldberg SP, Jordan WD (1999) Heat shock proteins: a review of the molecular chaperones. J Vasc Surg 29:748–751

    Article  CAS  Google Scholar 

  • Wilhelmus M, Otte-Höller I, Wesseling P, De Waal R, Boelens W, Verbeek M (2006) Specific association of small heat shock proteins with the pathological hallmarks of Alzheimer's disease brains. Neuropathol Appl Neurobiol 32:119–130

    Article  CAS  Google Scholar 

  • Wu D, Cederbaum AI (2003) Alcohol, oxidative stress, and free radical damage. Alcohol Res Health 27:277–284

    PubMed  Google Scholar 

  • Wyttenbach A, Arrigo AP (2009) The role of heat shock proteins during neurodegeneration in Alzheimer’s, Parkinson’s and Huntington’s disease. In: Heat shock proteins in neural cells, pp 81–99

    Chapter  Google Scholar 

  • Wyttenbach A, Sauvageot O, Carmichael J, Diaz-Latoud C, Arrigo A-P, Rubinsztein DC (2002) Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet 11:1137–1151

    Article  CAS  Google Scholar 

  • Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, Maruyama K, Kim J-M, Seki M, Todaka D (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Gen Genomics 286:321–332

    Article  CAS  Google Scholar 

  • Yu Q, Kent CR, Tytell M (2001) Retinal uptake of intravitreally injected Hsc/Hsp70 and its effect on susceptibility to light damage. Mol Vis 7:48–56

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Bose Institute, Kolkata for providing the facility needed to gather information in relation to this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parames C. Sil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, S., Sarkar, P., Basak, P., Mahalanobish, S., Sil, P.C. (2018). Role of Heat Shock Proteins in Oxidative Stress and Stress Tolerance. In: Asea, A., Kaur, P. (eds) Heat Shock Proteins and Stress. Heat Shock Proteins, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-90725-3_6

Download citation

Publish with us

Policies and ethics