Skip to main content

Part of the book series: Information Fusion and Data Science ((IFDS))

  • 1157 Accesses

Abstract

The aim of filters is to get accurate estimates of the useful signal from the signal with noises. Based on the measurement of the observable signal of the system and using some statistical optimal method, the theory of filtering can be treated as the theory and method of estimating the state of the system according to certain filtering criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arasaratnam I, Haykin S (2009) Cubature Kalman filters. IEEE Trans Autom Control 54(6):1254–1269

    Article  MathSciNet  Google Scholar 

  2. Arasaratnam I, Haykin S, Elliott RJ (2007) Discrete-time nonlinear filtering algorithms using gausshermite quadrature. Proc IEEE 95(5):953–977

    Article  Google Scholar 

  3. Banavar RN (1992) A game theoretic approach to linear dynamic estimation. Doctoral Dissertation, University of Texas at Austin

    Google Scholar 

  4. Bishop AN, Pathirana PN, Savkin AV (2007) Radar target tracking via robust linear filtering. IEEE Signal Process Lett 14(12):1028–1031

    Article  Google Scholar 

  5. Cappe O, Godsill SJ, Moulines E (2007) An overview of existing methods and recent advances in sequential Monte Carlo. Proc IEEE 95(5):899–924

    Article  Google Scholar 

  6. Dan S (2006) Optimal state estimation: Kalman, H ∞ , and nonlinear approaches. Wiley-Interscience, New York

    Google Scholar 

  7. Einicke GA, White LB (1999) Robust extended Kalman filtering. IEEE Trans Signal Process 47(9):2596–2599

    Article  Google Scholar 

  8. Haug AJ (2012) Bayesian estimation and tracking: a practical guide. Springer, New York

    Book  Google Scholar 

  9. Julier SJ, Uhlmann JK (2004) Unscented filtering and nonlinear estimation. Proc IEEE 92(3):401–422

    Article  Google Scholar 

  10. Li YK, Jing ZL, Hu SQ (2010) Redundant adaptive robust tracking of active satellite and error evaluation. IET Control Theory Appl 4(11):2539–2553

    Article  MathSciNet  Google Scholar 

  11. Li W, Gong D, Liu M, Chen J, Duan D (2013) Adaptive robust Kalman filter for relative navigation using global position system. IET Radar Sonar Navig 7(5):471–479

    Article  Google Scholar 

  12. Li Y, Jing Z, Liu G (2014) Maneuver-aided active satellite tracking using six-DOF optimal dynamic inversion control. IEEE Trans Aerosp Electron Syst 50(1):704–719

    Article  Google Scholar 

  13. Mahler R (2003) Multitarget Bayes filtering via first-order multitarget moments. IEEE Trans Aerosp Electron Syst 39(4):1152–1178

    Article  Google Scholar 

  14. Mahler RPS (2007) PHD filters of higher order in target number. IEEE Trans Aerosp Electron Syst 43(4):1523–1543

    Article  Google Scholar 

  15. Mahler RPS (2007) Statistical multisource-multitarget information fusion. Artech House, Norwood

    Google Scholar 

  16. Norgaard M, Poulsen NK, Ravn O (2000) New developments in state estimation for nonlinear systems. Automatica 36(11):1627–1638

    Article  MathSciNet  Google Scholar 

  17. Ristic B, Arulampalam S, Gordon N (2003) Beyond the Kalman filter-particle filters for tracking applications. IEEE Trans Aerosp Electron Syst 19(7):37–38

    MATH  Google Scholar 

  18. Seo J, Yu MJ, Park CG, Lee JG (2006) An extended robust h ∞ filter for nonlinear constrained uncertain systems. IEEE Trans Signal Process 54(11):4471–4475

    Article  Google Scholar 

  19. Shen X, Deng L (1997) Game theory approach to discrete h ∞ filter design. IEEE Trans Signal Process 45(4):1092–1095

    Article  Google Scholar 

  20. Soken HE, Hajiyev C (2010) Pico satellite attitude estimation via robust unscented Kalman filter in the presence of measurement faults. ISA Trans 49(3):249–256

    Article  Google Scholar 

  21. Theodor U, Shaked U, Souza CED (1994) A game theory approach to robust discrete-time H ∞ -estimation. IEEE, New York

    Google Scholar 

  22. Vo BT, Vo BN, Cantoni A (2009) The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Trans Signal Process 57(2):409–423

    Article  MathSciNet  Google Scholar 

  23. Vo BN, Vo BT, Phung D (2014) Labeled random finite sets and the Bayes multi-target tracking filter. IEEE Trans Signal Process 62(24):6554–6567

    Article  MathSciNet  Google Scholar 

  24. Xiong K, Zhang H, Liu L (2008) Adaptive robust extended Kalman filter for nonlinear stochastic systems. IET Control Theory Appl 2(3):239–250

    Article  MathSciNet  Google Scholar 

  25. Zhong M, Zhou D, Ding SX (2010) On designing h ∞ fault detection filter for linear discrete time-varying systems. IEEE Trans Autom Control 55(7):1689–1695

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jing, Z., Pan, H., Li, Y., Dong, P. (2018). Nonlinear Filter. In: Non-Cooperative Target Tracking, Fusion and Control. Information Fusion and Data Science. Springer, Cham. https://doi.org/10.1007/978-3-319-90716-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90716-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90715-4

  • Online ISBN: 978-3-319-90716-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics