Skip to main content

Optimal Dynamic Inversion Control for Spacecraft Maneuver-Aided Tracking

  • Chapter
  • First Online:
  • 1133 Accesses

Part of the book series: Information Fusion and Data Science ((IFDS))

Abstract

The discussion of this chapter is focused on a generalized inter-satellite tracking problem, maneuver-aided active satellite tracking. Due to the uncooperative maneuver of the active target satellite decreasing the tracking performance, a generalized scheme named spacecraft maneuver-aided tracking strategy (SMATS) is established. The SMATS is mainly composed of an algorithm for robust tracking, a scheme for reference coordinate system matching, a relative motion control law, and a transfer function of tracking attitude. It can help realize the chaser satellite staying autonomously with the desired position and attitude and guarantee the tracking performance. The control law is developed by using the optimal dynamic inversion control (ODIC) method, having six DOFs. Based on the precise feedback linearization, the ODIC law is a nonlinear optimal solution, providing desirable control performance. The efficiency of the SMATS and the advantages of the ODIC law are demonstrated by several simulation cases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alfriend K, Yan H (2005) Evaluation and comparison of relative motion theories. J Guid Control Dyn 28(2):254–261

    Article  Google Scholar 

  2. Arasaratnam I, Haykin S (2009) Cubature Kalman filters. IEEE Trans Autom Control 54(6):1254–1269

    Article  MathSciNet  Google Scholar 

  3. Babu VS, Shankar MR, Majumdar S, Rao SK (2011) Imm-unscented Kalman filter based tracking of maneuvering targets using active sonar measurements. In: International conference on communications and signal processing (ICCSP). IEEE, Piscataway, pp 126–130

    Google Scholar 

  4. Broucke RA (2003) Solution of the elliptic rendezvous problem with the time as independent variable. J Guid Control Dyn 26(4):615–621

    Article  Google Scholar 

  5. Caicedo R, Valasek J, Junkins J (2004) Preliminary results of vehicle formation control using dynamic inversion. In: 42nd AIAA aerospace sciences meeting and exhibit, p 295

    Google Scholar 

  6. Cao C, Hovakimyan N, Evers J (2006) Active control of visual sensor for aerial tracking. In: AIAA guidance, navigation, and control conference and exhibit, p 6610

    Google Scholar 

  7. Chen WH (2003) Nonlinear disturbance observer-enhanced dynamic inversion control of missiles. J Guid Control Dyn 26(1):161–166

    Article  Google Scholar 

  8. Da Costa R, Chu Q, Mulder J (2003) Reentry flight controller design using nonlinear dynamic inversion. J Spacecr Rocket 40(1):64–71

    Article  Google Scholar 

  9. Doman DB, Ngo AD (2002) Dynamic inversion-based adaptive/reconfigurable control of the x-33 on ascent. J Guid Control Dyn 25(2):275–284

    Google Scholar 

  10. Duan Z, Han C, Li XR (2004) Comments on “unbiased converted measurements for tracking”. IEEE Trans Aerosp Electron Syst 40(4):1374

    Google Scholar 

  11. Fujimoto K, Scheeres D, Alfriend K (2012) Analytical nonlinear propagation of uncertainty in the two-body problem. J Guid Control Dyn 35(2):497–509

    Article  Google Scholar 

  12. Gim DW, Alfriend KT (2003) State transition matrix of relative motion for the perturbed noncircular reference orbit. J Guid Control Dyn 26(6):956–971

    Article  Google Scholar 

  13. Hormigo T, Araújo J, Câmara F (2008) Nonlinear dynamic inversion-based guidance and control for a pinpoint mars entry. In: AIAA guidance, navigation and control conference and exhibit, p 6817

    Google Scholar 

  14. Jia B, Xin M, Cheng Y (2011) Sparse gauss-hermite quadrature filter with application to spacecraft attitude estimation. J Guid Control Dyn 34(2):367–379

    Google Scholar 

  15. Kramer KA, Stubberud SC (2005) An adaptive gaussian sum approach for maneuver tracking. In: IEEE aerospace conference. IEEE, Piscataway, pp 2083–2091

    Google Scholar 

  16. Lane CM, Axelrad P (2006) Formation design in eccentric orbits using linearized equations of relative motion. J Guid Control Dyn 29(1):146–160

    Article  Google Scholar 

  17. Li Y (2010) Autonomous follow-up tracking and control of noncooperative space target. Ph.D. dissertation, Shanghai Jiao Tong University

    Google Scholar 

  18. Li Y, Jing Z, Hu S (2010) Redundant adaptive robust tracking of active satellite and error evaluation. IET Control Theory Appl 4(11):2539–2553

    Article  MathSciNet  Google Scholar 

  19. Li Y, Jing Z, Hu S (2011) Dynamic optimal sliding-mode control for six-DOF follow-up robust tracking of active satellite. Acta Astronaut 69(7):559–570

    Google Scholar 

  20. Li Y, Jing Z, Liu G (2014) Maneuver-aided active satellite tracking using six-DOF optimal dynamic inversion control. IEEE Trans Aerosp Electron Syst 50(1):704–719

    Article  Google Scholar 

  21. Longbin M, Xiaoquan S, Yiyu Z, Kang SZ, Bar-Shalom Y (1998) Unbiased converted measurements for tracking. IEEE Trans Aerosp Electron Syst 34(3):1023–1027

    Article  Google Scholar 

  22. Shirzi MA, Hairi-Yazdi M (2011) Active tracking using intelligent fuzzy controller and kernel-based algorithm. In: IEEE international conference on fuzzy systems (FUZZ). IEEE, Piscataway, pp 1157–1163

    Google Scholar 

  23. Stepanyan V, Hovakimyan N (2007) Adaptive disturbance rejection controller for visual tracking of a maneuvering target. J Guid Control Dyn 30(4):1090–1106

    Article  Google Scholar 

  24. Stepanyan V, Hovakimyan N (2008) Visual tracking of a maneuvering target. J Guid Control Dyn 31(1):66–80

    Article  Google Scholar 

  25. Xiong K, Zhang H, Liu L (2008) Adaptive robust extended Kalman filter for nonlinear stochastic systems. IET Control Theory Appl 2(3):239–250

    Article  MathSciNet  Google Scholar 

  26. Xiong K, Liu L, Zhang H (2009) Modified unscented Kalman filtering and its application in autonomous satellite navigation. Aerosp Sci Technol 13(4):238–246

    Article  Google Scholar 

  27. Xu Y (2005) Sliding mode control and optimization for six DOF satellite formation flying considering saturation. J Astronaut Sci 53(4):433–443

    MathSciNet  Google Scholar 

  28. Yoon H, Agrawal BN (2009) Novel expressions of equations of relative motion and control in Keplerian orbits. J Guid Control Dyn 32(2):664–669

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Natural Science Foundation of China (61175028, 60775022 and 60674107) and Aviation Science Foundation of China (2009ZC57003), and in part by the Canada Research Chair program.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jing, Z., Pan, H., Li, Y., Dong, P. (2018). Optimal Dynamic Inversion Control for Spacecraft Maneuver-Aided Tracking. In: Non-Cooperative Target Tracking, Fusion and Control. Information Fusion and Data Science. Springer, Cham. https://doi.org/10.1007/978-3-319-90716-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90716-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90715-4

  • Online ISBN: 978-3-319-90716-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics