Skip to main content

Constrained Image Deblurring with Sparse Proximal Newton Splitting Method

  • Chapter
  • First Online:
  • 1159 Accesses

Part of the book series: Information Fusion and Data Science ((IFDS))

Abstract

This chapter proposes a framework of sparse proximal Newton splitting method for constrained image deblurring. This framework can be viewed as a generalization of proximal splitting method, which provides a common update strategy by exploiting second derivative information. This is achieved through utilizing the sparse pattern of inverse Hessian matrix. To alleviate the difficulties of the weighted least squares problem, an approximate solution is derived. Some theoretical aspects related to the proposed method are also discussed. Numerical experiments on various blurring conditions demonstrate the advantage of the proposed method in comparison to other iterative shrinkage-thresholding algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.lx.it.pt/~bioucas/code/TwIST_v2.zip.

  2. 2.

    http://ie.technion.ac.il/~becka/papers/tv_fista.zip.

References

  1. Afonso MV, Bioucas-Dias JM, Figueiredo MA (2010) Fast image recovery using variable splitting and constrained optimization. IEEE Trans Image Process 19(9):2345–2356

    Article  MathSciNet  Google Scholar 

  2. Afonso MV, Bioucas-Dias JM, Figueiredo MA (2011) An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans Image Process 20(3):681–695

    Article  MathSciNet  Google Scholar 

  3. Andrews HC, Hunt BR (1977) Digital image restoration. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  4. Beck A, Teboulle M (2009) Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans Image Process 18(11):2419–2434

    Article  MathSciNet  Google Scholar 

  5. Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imag Sci 2(1):183–202

    Article  MathSciNet  Google Scholar 

  6. Becker S, Fadili J (2012) A quasi-Newton proximal splitting method. In: Advances in neural information processing systems, pp 2618–2626

    Google Scholar 

  7. Bertsekas DP (2009) Convex optimization theory. Athena Scientific, Belmont

    Google Scholar 

  8. Bioucas-Dias JM, Figueiredo MAT (2007) A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans Image Process 16(12):2992–3004

    Article  MathSciNet  Google Scholar 

  9. Candès EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509

    Article  MathSciNet  Google Scholar 

  10. Chan SH, Khoshabeh R, Gibson KB, Gill PE, Nguyen TQ (2011) An augmented Lagrangian method for total variation video restoration. IEEE Trans Image Process 20(11):3097

    Article  MathSciNet  Google Scholar 

  11. Clason C, Jin B, Kunisch K (2010) A duality-based splitting method for 1-tv image restoration with automatic regularization parameter choice. SIAM J Sci Comput 32(3):1484–1505

    Google Scholar 

  12. Combettes PL (2004) Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53(5–6):475–504

    Article  MathSciNet  Google Scholar 

  13. Combettes PL (2009) Iterative construction of the resolvent of a sum of maximal monotone operators. J Convex Anal 16(4):727–748

    Google Scholar 

  14. Combettes PL, Pesquet JC (2011) Proximal splitting methods in signal processing. In: Fixed-point algorithms for inverse problems in science and engineering. Springer, Berlin, pp 185–212

    Google Scholar 

  15. Combettes PL, Wajs VR (2005) Signal recovery by proximal forward-backward splitting. Multiscale Model Simul 4(4):1168–1200

    Article  MathSciNet  Google Scholar 

  16. Daubechies I, Defrise M, De Mol C (2004) An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun Pure Appl Math 57(11):1413–1457

    Article  MathSciNet  Google Scholar 

  17. Dykstra RL (1983) An algorithm for restricted least squares regression. J Am Stat Assoc 78(384):837–842

    Article  MathSciNet  Google Scholar 

  18. Goldfarb D, Ma S (2012) Fast multiple-splitting algorithms for convex optimization. SIAM J Optim 22(2):533–556

    Article  MathSciNet  Google Scholar 

  19. Huang J, Zhang S, Metaxas D (2010) Fast optimization for mixture prior models. In: European conference on computer vision (ECCV), pp 607–620

    Chapter  Google Scholar 

  20. Ji S, Ye J (2009) An accelerated gradient method for trace norm minimization. In: Proceedings of the 26th annual international conference on machine learning. ACM, New York, pp 457–464

    Google Scholar 

  21. Joshi N, Kang SB, Zitnick CL, Szeliski R (2010) Image deblurring using inertial measurement sensors. In: ACM Transactions on Graphics (TOG), vol 29. ACM, New York, p 30

    Article  Google Scholar 

  22. Kundur D, Hatzinakos D (1996) Blind image deconvolution. IEEE Signal Process Mag 13(3):43–64

    Article  Google Scholar 

  23. Lee JD, Sun Y, Saunders MA (2012) Proximal Newton-type methods for minimizing convex objective functions in composite form. Adv Neural Inf Process Syst 25:827–835

    Google Scholar 

  24. Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, New York

    MATH  Google Scholar 

  25. Pan H (2014) Image deblurring and dynamic fusion with sparse proximal operator. Ph.D. thesis, Shanghai Jiao Tong University

    Google Scholar 

  26. Pan H, Jing Z, Lei M, Liu R, Jin B, Zhang C (2013) A sparse proximal Newton splitting method for constrained image deblurring. Neurocomputing 122:245–257

    Article  Google Scholar 

  27. Peyré G, Bougleux S, Cohen L (2008) Non-local regularization of inverse problems. In: European conference on computer vision (ECCV). Springer, Berlin, pp 57–68

    Google Scholar 

  28. Raguet H, Fadili J, Peyré G (2012) Generalized forward-backward splitting. SIAM J Imag Sci 6(3):1199–1226

    Article  MathSciNet  Google Scholar 

  29. Raskar R, Agrawal A, Tumblin J (2006) Coded exposure photography: motion deblurring using fluttered shutter. In: ACM transactions on graphics (TOG), vol 25. ACM, New York, pp 795–804

    Google Scholar 

  30. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D Nonlinear Phenomena 60(1–4):259–268

    Article  MathSciNet  Google Scholar 

  31. Tao M, Yang J, He B (2009) Alternating direction algorithms for total variation deconvolution in image reconstruction. TR0918, Department of Mathematics, Nanjing University

    Google Scholar 

  32. Toh KC, Yun S (2010) An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pac J Optim 6(615–640):15

    MathSciNet  MATH  Google Scholar 

  33. Tomioka R, Aihara K (2007) Classifying matrices with a spectral regularization. In: Proceedings of the 24th international conference on machine learning. ACM, New York, pp 895–902

    Google Scholar 

  34. Vogel CR (2002) Computational methods for inverse problems. SIAM, Philadelphia

    Book  Google Scholar 

  35. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  36. Wright SJ, Nowak RD, Figueiredo MA (2009) Sparse reconstruction by separable approximation. IEEE Trans Signal Process 57(7):2479–2493

    Article  MathSciNet  Google Scholar 

  37. Yang J, Zhang Y, Yin W (2010) A fast alternating direction method for tvl1-l2 signal reconstruction from partial fourier data. IEEE J Sel Top Sign Proces 4(2):288–297

    Article  Google Scholar 

Download references

Acknowledgements

This work is jointly supported by the National Natural Science Foundation of China (Grant Nos.61175028, 61603249 and 61271317) and the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20090073110045). The authors also thank the excellent works of Dr. Jose M. Bioucas Dias and Dr. Amir by making their source codes public available.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jing, Z., Pan, H., Li, Y., Dong, P. (2018). Constrained Image Deblurring with Sparse Proximal Newton Splitting Method. In: Non-Cooperative Target Tracking, Fusion and Control. Information Fusion and Data Science. Springer, Cham. https://doi.org/10.1007/978-3-319-90716-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90716-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90715-4

  • Online ISBN: 978-3-319-90716-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics