Skip to main content

Dianthus

  • Chapter
  • First Online:
Ornamental Crops

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 11))

Abstract

Carnation (Dianthus caryophyllus L.) is one of the world’s main floricultural crops. The genus Dianthus is a member of the Caryophyllaceae and includes more than 300 species of annuals and evergreen perennials. A very complex hybridization lies behind modern carnation cultivars owing to the species’ long history of breeding. In this chapter, the breeding history and transition of preferences for carnation cultivars (standard, spray, and dwarf types) are summarized. The chapter focuses on recent progress in carnation breeding research for flower color, mutations, flower type, disease resistance, vase life, interspecific hybridization, fragrance, and polyploidy. It also highlights the genetics of flower color and pigment composition in white cultivars, progress of breeding for resistance to bacterial wilt and for long vase life, and interspecific hybridization between carnation lines with long vase life and D. superbus var. longicalycinus, a wild species native to Japan, during the last 30 years of work by my research group. It also summarizes genomic analysis of carnation, including large-scale transcriptome sequencing using next-generation sequencing technology. It concludes by describing construction of a genetic linkage map, quantitative trait locus (QTL) analyses, and genome sequencing research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abe Y, Tera M, Sasaki N, Okamura M, Umemoto N, Momose M, Kawahara N, Kamakura H, Goda Y, Nagasawa K, Ozeki Y (2008) Detection of 1-O-malylglucose: pelargonidin 3-O-glucose-6′′-O-malyltransferase activity in carnation (Dianthus caryophyllus). Biochem Biophys Res Commun 373:473–477

    Article  PubMed  CAS  Google Scholar 

  • Agulló-Antón MA, Olmos E, Pérez-Pérez JM, Acosta M (2013) Evaluation of ploidy level and endoreduplication in carnation (Dianthus spp.). Plant Sci 201–202:1–11

    Article  PubMed  CAS  Google Scholar 

  • Andersson-Kotto I, Gairdner AE (1931) Interspecific crosses in the genus Dianthus. Genetica 13:77–112

    Article  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Report 9:208–218

    Article  CAS  Google Scholar 

  • Baayen RP, Sparaaij LD, Jansen J, Niemann GJ (1991) Inheritance of resistance in carnation against Fusarium oxysporum f. sp. dianthi races 1 and 2, in relation to resistance components. Neth J Plant Pathol 97:73–86

    Article  Google Scholar 

  • Baayen RP, van Dreven F, Krijger MC, Waalwijk C (1997) Genetic diversity in Fusarium oxysporum f. sp. dianthi and Fusarium redolens f. sp. dianthi. Eur J Plant Pathol 103:395–408

    Article  CAS  Google Scholar 

  • Balao F, Casimiro-Soriguer R, Talavera M, Herrera J, Talavera S (2009) Distribution and diversity of cytotypes in Dianthus broteri as evidenced by genome size variations. Ann Bot 104:965–973

    Article  PubMed  PubMed Central  Google Scholar 

  • Balao F, Valente LM, Vargas P, Herrera J, Talavera S (2010) Radiative evolution of polyploid races of the Iberian carnation Dianthus broteri (Caryophyllaceae). New Phytol 187:542–551

    Article  PubMed  CAS  Google Scholar 

  • Bloor SJ (1998) A macrocyclic anthocyanin from red/mauve carnation flowers. Phytochemistry 49:225–228

    Article  CAS  Google Scholar 

  • Britsch L, Dedio J, Saedler H, Forkmann G (1993) Molecular characterization of flavanone 3β-hydroxylases. Consensus sequence, comparison with related enzymes and the role of conserved histidine residues. Eur J Biochem 217:745–754

    Article  PubMed  CAS  Google Scholar 

  • Carolin RC (1957) Cytological and hybridization studies in the genus Dianthus. New Phytol 56:81–97

    Article  Google Scholar 

  • Chandler S (2007) Practical lessons in the commercialization of genetically modified plants –long vase-life carnation. Acta Hortic 764:71–81

    Article  CAS  Google Scholar 

  • Clery RA, Owen NE, Chambers SF (1999) An investigation into the scent of carnations. J Essent Oil Res 11:355–359

    Article  CAS  Google Scholar 

  • Demmink JF, Baayen RP, Sparnaaij LD (1989) Evaluation of the virulence of races 1, 2 and 4 of Fusarium oxysporum f. sp. dianthi in carnation. Euphytica 42:55–63

    Article  Google Scholar 

  • Figueira A, Janick J, Goldsbrough P (1992) Genome size and DNA polymorphism in Theobroma cacao. J Am Soc Hortic Sci 117:673–677

    CAS  Google Scholar 

  • Forkmann G, Dangelmayr B (1980) Genetic control of chalcone isomerase activity in flowers of Dianthus caryophyllus. Biochem Genet 18:519–527

    Article  PubMed  CAS  Google Scholar 

  • Fu XP, Zhang JJ, Li F, Zhan PT, Bao MZ (2011) Effects of genotype and stigma development stage on seed set following intra- and inter-specific hybridization of Dianthus spp. Sci Hortic 128:490–498

    Article  Google Scholar 

  • Fukui Y, Tanaka Y, Kusumi T, Iwashita T, Nomoto K (2003) A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3′,5′-hydroxylase gene. Phytochemistry 63:15–23

    Article  PubMed  CAS  Google Scholar 

  • Galbally J, Galbally E (1997) Carnation and pinks for garden and greenhouse. Timber Press, Portland, Oregon

    Google Scholar 

  • Garibaldi A, Gullino ML (1987) Fusarium wilt of carnation: present situation, problems and perspectives. Acta Hortic 216:45–54

    Article  Google Scholar 

  • Garibaldi A, Gullino ML (2012) Fusarium wilt of carnation. In: Gullino ML, Katan J, Garibaldi A (eds) Fusarium wilts of greenhouse vegetable and ornamental crops. APS Press, St. Paul, MN, pp 191–198

    Google Scholar 

  • Gatt MK, Hammett KRW, Markham KR, Murray BG (1998) Yellow pinks: interspecific hybridization between Dianthus plumarius and related species with yellow flowers. Sci Hortic 77:207–218

    Article  Google Scholar 

  • Geissman TA, Mehlquist GAL (1947) Inheritance in the carnation, Dianthus caryophyllus. IV. The chemistry of flower color variation, I. Genetics 32:410–433

    PubMed  PubMed Central  CAS  Google Scholar 

  • Halevy AH, Mayak S (1981) Senescence and postharvest physiology of cut flowers, part 2. Hortic Rev 3:59–143

    CAS  Google Scholar 

  • Halmagyi A, Lambardi M (2006) Cryopreservation of carnation (Dianthus caryophyllus L.). In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology. Advances and topical issues, vol 2. Global Science Books, Isleworth, pp 415–423

    Google Scholar 

  • Hamilton RFL, Walters SM (1989) Dianthus Linnaeus. In: Walters SM, Alexander JCM, Brady A, Brickell CD, Cullen J, Green PS, Heywood VH, Matthews VA, Robson NKB, Yeo PF, Knees SG (eds) The European garden flora, vol 3. Cambridge University Press, Cambridge, pp 185–191

    Google Scholar 

  • Holley WD, Baker R (1963) Carnation production. Wm.C. Brown Co-Inc, Dubuque, IA

    Google Scholar 

  • Hotta M, Hattori H, Hirano T, Kume T, Okumura Y, Inubushi K, Inayoshi Y, Ninura M, Matsuno J, Onozaki T, Yagi M, Yamaguchi H, Yamaguchi N (2016) Breeding and characteristics of spray-type carnation ‘‘Kane Ainou 1 go’’ with long vase life. Res Bull Aichi Agric Res Ctr 48:63–71. (In Japanese with English abstract)

    Google Scholar 

  • Hudak KA, Thompson JE (1997) Subcellular localization of secondary lipid metabolites including fragrance volatiles in carnation petals. Plant Physiol 114:705–713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Itoh A, Takeda Y, Tsukamoto Y, Tomino K (1989) Dianthus L. In: Tsukamoto Y (ed) The grand dictionary of horticulture, vol 3. Shogakukan, Tokyo, pp 455–462. (In Japanese)

    Google Scholar 

  • Itoh Y, Higeta D, Suzuki A, Yoshida H, Ozeki Y (2002) Excision of transposable elements from the chalcone isomerase and dihydroflavonol 4-reductase genes may contribute to the variegation of the yellow-flowered carnation (Dianthus caryophyllus). Plant Cell Physiol 43:578–585

    Article  PubMed  CAS  Google Scholar 

  • Iwashina T, Yamaguchi M, Nakayama M, Onozaki T, Yoshida H, Kawanobu S, Ono H, Okamura M (2010) Kaempferol glycosides in the flowers of carnation and their contribution to the creamy white flower color. Nat Prod Commun 5:1903–1906

    PubMed  CAS  Google Scholar 

  • Jones LK (1941) Bacterial wilt of carnations. Phytopathology 31:199

    Google Scholar 

  • Jürgens A, Witt T, Gottsberger G (2003) Flower scent composition in Dianthus and Saponaria species (Caryophyllaceae) and its relevance for pollination biology and taxonomy. Biochem Syst Ecol 31:345–357

    Article  Google Scholar 

  • Kanda M (1992) Ovule culture for hybridization between carnation and the genus Dianthus. J Jpn Soc Hortic Sci 61(Suppl. 2):464–465. (In Japanese)

    Google Scholar 

  • Kanda M, Horikawa T, Nakamura Y, Motoori S, Kotake H (1998) Breeding of carnation cultivars ‘‘Aqua Red’’ and ‘‘Aqua Yellow’’ through the interspecific hybridization between Dianthus caryophyllus and D. superbus. J Jpn Soc Hortic Sci 67(Suppl. 1):247

    Google Scholar 

  • Kingman R (1983) The carnation industry in the United States. Acta Hortic 141:249–252

    Article  Google Scholar 

  • Kishimoto K, Nakayama M, Yagi M, Onozaki T, Oyama-Okubo N (2011) Evaluation of wild Dianthus species as genetic resources for fragrant carnation breeding based on their floral scent composition. J Jpn Soc Hortic Sci 80:175–181

    Article  Google Scholar 

  • Kishimoto K, Yagi M, Onozaki T, Yamaguchi H, Nakayama M, Oyama-Okubo N (2013) Analysis of scents emitted from flowers of interspecific hybrids between carnation and fragrant wild Dianthus species. J Jpn Soc Hortic Sci 82:145–153

    Article  CAS  Google Scholar 

  • Klee HJ, Clark DG (2004) Ethylene signal transduction in fruits and flowers. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action, 3rd edn. Kluwer Academic Publishers, Dordrecht, pp 369–390

    Google Scholar 

  • Mato M, Onozaki T, Ozeki Y, Higeta D, Itoh Y, Yoshimoto Y, Ikeda H, Yoshida H, Shibata M (2000) Flavonoid biosynthesis in white-flowered Sim carnations (Dianthus caryophyllus). Sci Hortic 84:333–347

    Article  CAS  Google Scholar 

  • Mato M, Onozaki T, Ozeki Y, Higeta D, Itoh Y, Hisamatsu T, Yoshida H, Shibata M (2001) Flavonoid biosynthesis in pink-flowered cultivars derived from ‘‘William Sim’’ carnation (Dianthus caryophyllus). J Jpn Soc Hortic Sci 70:315–319

    Article  CAS  Google Scholar 

  • Matsuba Y, Sasaki N, Tera M, Okamura M, Abe Y, Okamoto E, Nakamura H, Funabashi H, Takatsu M, Saito M, Matsuoka H, Nagasawa K, Ozeki Y (2010) A novel glucosylation reaction on anthocyanins catalyzed by acyl-glucose-dependent glucosyltransferase in the petals of carnation and delphinium. Plant Cell 22:3374–3389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mayak S, Tirosh T (1993) Unusual ethylene-related behavior in senescing flowers of the carnation Sandrosa. Physiol Plant 88:420–426

    Article  CAS  Google Scholar 

  • Mehlquist GAL, Geissman TA (1947) Inheritance in the carnation, Dianthus caryophyllus III Inheritance of flower colour. Ann Mo Bot Gard 34:39–75

    Article  Google Scholar 

  • Mizuno H (1993) Race differentiation of Fusarium oxysporum f. sp. dianthi collected from carnation growing areas in Japan. Proc Kanto-Tosan Plant Prot Soc 40:157–159. (In Japanese with English abstract)

    Google Scholar 

  • Momose M, Nakayama M, Itoh Y, Umemoto N, Toguri T, Ozeki Y (2013) An active hAT transposable element causing bud mutation of carnation by insertion into the flavonoid 3′-hydroxylase gene. Mol Gen Genomics 288:175–184

    Article  CAS  Google Scholar 

  • Moyal-Ben Zvi M, Vainstein A (2007) Carnation. In: Pua EC, Davey MR (eds) Biotechnology in agriculture and forestry. Transgenic crops VI, vol 61. Springer, Berlin, pp 241–252

    Google Scholar 

  • Nakano M, Mii M (1993a) Somatic hybridization between Dianthus chinensis and D. barbatus through protoplast fusion. Theor Appl Genet 86:1–5

    Article  PubMed  CAS  Google Scholar 

  • Nakano M, Mii M (1993b) Interspecific somatic hybridization in Dianthus: selection of hybrids by the use of iodoacetamide inactivation and regeneration ability. Plant Sci 88:203–208

    Article  CAS  Google Scholar 

  • Nakayama M, Koshioka M, Yoshida H, Kan Y, Fukui Y, Koike A, Yamaguchi M (2000) Cyclic malyl anthocyanins in Dianthus caryophyllus. Phytochemistry 55:937–939

    Article  PubMed  CAS  Google Scholar 

  • Nelson PE, Dickey RS (1963) Reaction of twenty-one commercial carnation varieties to Pseudomonas caryophylli. Phytopathology 53:320–324

    Google Scholar 

  • Nimura M, Kato J, Mii M, Morioka K (2003) Unilateral compatibility and genotypic difference in crossability in interspecific hybridization between Dianthus caryophyllus L. and Dianthus japonicus Thunb. Theor Appl Genet 106:1164–1170

    Article  PubMed  CAS  Google Scholar 

  • Nimura M, Kato J, Mii M, Katoh T (2006a) Amphidiploids produced by natural chromosome-doubling in interspecific hybrids between Dianthus × isensis Hirahata et Kitam. and D. japonicus Thunb. J Hortic Sci Biotechnol 81:72–77

    Article  Google Scholar 

  • Nimura M, Kato J, Horaguchi H, Mii M, Sakai K, Katoh T (2006b) Induction of fertile amphidiploids induction by artificial chromosome-doubling in interspecific hybrid between Dianthus caryophyllus L. and D. japonicus Thunb. Breed Sci 56:303–310

    Article  Google Scholar 

  • Nimura M, Kato J, Mii M (2008a) Carnation improvement: Interspecific hybridization and polyploidization in carnation breeding. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology. Advances and topical issues, vol 5. Global Science Books, Isleworth, pp 105–121

    Google Scholar 

  • Nimura M, Kato J, Mii M, Ohishi K (2008b) Cross-compatibility and the polyploidy of progenies in reciprocal backcrosses between diploid carnation (Dianthus caryophyllus L.) and its amphidiploid with Dianthus japonicus Thunb. Sci Hortic 115:183–189

    Article  Google Scholar 

  • Ogata J, Itoh Y, Ishida M, Yoshida H, Ozeki Y (2004) Cloning and heterologous expression of cDNAs encoding flavonoid glucosyltransferases from Dianthus caryophyllus. Plant Biotechnol 21:367–375

    Article  CAS  Google Scholar 

  • Ohtsuka H, Horiuchi M, Inaba Z, Wakasawa H, Fukushima T (1995) Interspecific hybrids between carnation and Dianthus species by using embryo culture and their characteristics. Bull Shizuoka Agric Exp Stn 40:27–38. (in Japanese)

    Google Scholar 

  • Okamura M, Yasuno N, Ohtsuka M, Tanaka A, Shikazono N, Hase Y (2003) Wide variety of flower-color and -shape mutants regenerated from leaf cultures irradiated with ion beams. Nucl Instrum Methods Phys Res B 206:574–578

    Article  CAS  Google Scholar 

  • Okamura M, Tanaka A, Momose M, Umemoto N, Teixeira da Silva JA, Toguri T (2006) Advances of mutagenesis in flowers and their industrialization. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology. Advances and topical issues, vol 1. Global Science Books, Isleworth, pp 619–628

    Google Scholar 

  • Okamura M, Nakayama M, Umemoto N, Cano EA, Hase Y, Nishizaki Y, Sasaki N, Ozeki Y (2013) Crossbreeding of a metallic color carnation and diversification of the peculiar coloration by ion-beam irradiation. Euphytica 191:45–56

    Article  Google Scholar 

  • Onozaki T (2001) Exploration and collection of Dianthus superbus var. longicalycinus and D. superbus in Mie prefecture and Hokkaido. Annu Rep Explor Introd Plant Genet Resour 17:49–54. (In Japanese with English abstract)

    Google Scholar 

  • Onozaki T (2006) Carnation. In: JSHS (ed) Horticulture in Japan 2006. Shoukadoh Publication, Kyoto, pp 223–230

    Google Scholar 

  • Onozaki T (2008) Improvement of flower vase life using cross-breeding techniques in carnation (Dianthus caryophyllus L.). JARQ 42:137–144

    Article  Google Scholar 

  • Onozaki T (2016) Carnation. In: Shibata M (ed) Japanese history on flower breeding. Yushokan, Tokyo, pp 31–62. (In Japanese)

    Google Scholar 

  • Onozaki T, Ikeda H, Yamaguchi T, Himeno M (1998) Introduction of bacterial wilt (Pseudomonas caryophylli) resistance in Dianthus wild species to carnation. Acta Hortic 454:127–132

    Article  Google Scholar 

  • Onozaki T, Yamaguchi T, Himeno M, Ikeda H (1999a) Evaluation of 277 carnation cultivars for resistance to bacterial wilt (Pseudomonas caryophylli). J Jpn Soc Hortic Sci 68:546–550

    Article  Google Scholar 

  • Onozaki T, Yamaguchi T, Himeno M, Ikeda H (1999b) Evaluation of wild Dianthus accessions for resistance to bacterial wilt (Pseudomonas caryophylli). J Jpn Soc Hortic Sci 68:974–978

    Article  Google Scholar 

  • Onozaki T, Mato M, Shibata M, Ikeda H (1999c) Differences in flower color and pigment composition among white carnation (Dianthus caryophyllus L.) cultivars. Sci Hortic 82:103–111

    Article  CAS  Google Scholar 

  • Onozaki T, Ikeda H, Yamaguchi T (2001) Genetic improvement of vase life of carnation flowers by crossing and selection. Sci Hortic 87:107–120

    Article  Google Scholar 

  • Onozaki T, Ikeda H, Yamaguchi T, Himeno M, Amano M, Shibata M (2002) ‘‘Carnation Nou No.1’’, a carnation breeding line resistant to bacterial wilt (Burkholderia caryophylli). Hortic Res (Japan) 1:13–16. (In Japanese with English abstract)

    Article  Google Scholar 

  • Onozaki T, Kudo K, Funayama T, Ikeda H, Tanikawa N, Shibata M (2003) Identification of random amplified polymorphic DNA markers linked to bacterial wilt resistance in carnations. Acta Hortic 612:95–103

    Article  CAS  Google Scholar 

  • Onozaki T, Ikeda H, Shibata M (2004a) Video evaluation of ethylene sensitivity after anthesis in carnation (Dianthus caryophyllus L.) flowers. Sci Hortic 99:187–197

    Article  CAS  Google Scholar 

  • Onozaki T, Tanikawa N, Taneya M, Kudo K, Funayama T, Ikeda H, Shibata M (2004b) A RAPD-derived STS marker is linked to a bacterial wilt (Burkholderia caryophylli) resistance gene in carnation. Euphytica 138:255–262

    Article  CAS  Google Scholar 

  • Onozaki T, Ikeda H, Shibata M, Tanikawa N, Yagi M, Yamaguchi T, Amano M (2006a) Breeding process and characteristics of carnation Norin No. 1 ‘‘Miracle Rouge’’ and No. 2 ‘‘Miracle Symphony’’ with long vase life. Bull Natl Inst Flor Sci 5:1–16. (In Japanese with English abstract)

    Google Scholar 

  • Onozaki T, Tanikawa N, Yagi M, Ikeda H, Sumitomo K, Shibata M (2006b) Breeding of carnations (Dianthus caryophyllus L.) for long vase life and rapid decrease in ethylene sensitivity of flowers after anthesis. J Jpn Soc Hortic Sci 75:256–263

    Article  CAS  Google Scholar 

  • Onozaki T, Yoshinari T, Yoshimura T, Yagi M, Yoshioka S, Taneya M, Shibata M (2006c) DNA markers linked to a recessive gene controlling single flower type derived from wild species, Dianthus capitatus ssp. andrzejowskianus. Hortic Res (Japan) 5:363–367. (In Japanese with English abstract)

    Article  CAS  Google Scholar 

  • Onozaki T, Yagi M, Shibata M (2008) Selection of ethylene-resistant carnations (Dianthus caryophyllus L.) by video recording system and their response to ethylene. Sci Hortic 116:205–212

    Article  CAS  Google Scholar 

  • Onozaki T, Yagi M, Fujita Y, Tanase K (2011a) Characteristics of interspecific hybrids between carnation (Dianthus caryophyllus) lines with long vase life and D. superbus var. longicalycinus, and their backcrossing progenies. Hortic Res (Japan) 10:161–172. (In Japanese with English abstract)

    Article  Google Scholar 

  • Onozaki T, Yagi M, Tanase K, Shibata M (2011b) Crossings and selections for six generations based on flower vase life to create lines with ethylene resistance or ultra-long vase life in carnations (Dianthus caryophyllus L.). J Jpn Soc Hortic Sci 80:486–498

    Article  CAS  Google Scholar 

  • Onozaki T, Yagi M, Tanase K (2015) Selection of carnation line 806-46b with both ultra-long vase life and ethylene resistance. Hortic J 84:58–68

    Article  CAS  Google Scholar 

  • Onozaki T, Yamada M, Yagi M, Tanase K, Shibata M (2018) Effects of crossing and selection for seven generations based on flower vase life in carnations (Dianthus caryophyllus L.), and the relationship between ethylene production and flower vase life in the breeding lines. Hortic J 87:106–114

    Article  Google Scholar 

  • Ouellette GB, Baayen RP, Simard M, Rioux D (1999) Ultrastructural and cytochemical study of colonization of xylem vessel elements of susceptible and resistant Dianthus caryophyllus by Fusarium oxysporum f. sp. dianthi. Can J Bot 77:644–663

    Google Scholar 

  • Sato S, Katoh N, Yoshida H, Iwai S, Hagimori M (2000) Production of doubled haploid plants of carnation (Dianthus caryophyllus L.) by pseudofertilized ovule culture. Sci Hortic 83:301–310

    Article  CAS  Google Scholar 

  • Satoh S (2005) Induction of flower senescence by ethylene. In: Hashiba T (ed) Development in plant protection – bridging bioscience. SoftScience, Inc., Tokyo, pp 305–317. (In Japanese)

    Google Scholar 

  • Satoh S (2011) Ethylene production and petal wilting during senescence of cut carnation (Dianthus caryophyllus) flowers and prolonging their vase life by genetic transformation. J Jpn Soc Hortic Sci 80:127–135

    Article  CAS  Google Scholar 

  • Saunders ER (1917) Studies in the inheritance of doubleness in flowers, II. Meconopsis, Althaea and Dianthus. J Genet 6:165–184

    Article  Google Scholar 

  • Scariot V, Paradiso R, Rogers H, De Pascale S (2014) Ethylene control in cut flowers: classical and innovative approaches. Postharvest Biol Technol 97:83–92

    Article  CAS  Google Scholar 

  • Schade F, Legge RL, Thompson JE (2001) Fragrance volatiles of developing and senescing carnation flowers. Phytochemistry 56:703–710

    Article  PubMed  CAS  Google Scholar 

  • Scovel G, Ben-Meir H, Ovadis M, Itzhaki H, Vainstein A (1998) RAPD and RFLP markers tightly linked to the locus controlling carnation (Dianthus caryophyllus) flower type. Theor Appl Genet 96:117–122

    Article  CAS  Google Scholar 

  • Serek M, Sisler EC, Woltering EJ, Mibus H (2007) Chemical and molecular genetic strategies to block ethylene perception for increased flower life. Acta Hortic 755:163–169

    Article  CAS  Google Scholar 

  • Shibuya K, Yoshioka T, Hashiba T, Satoh S (2000) Role of the gynoecium in natural senescence of carnation (Dianthus caryophyllus) flowers. J Exp Bot 51:2067–2073

    Article  PubMed  CAS  Google Scholar 

  • Sparnaaij LD (1979) Polyploidy in flower breeding. HortScience 14:496–499

    Google Scholar 

  • Sparnaaij LD, Demmink JF (1983) Carnations of the future. Acta Hortic 141:17–22

    Article  Google Scholar 

  • Sparnaaij LD, Koehorst-van Putten HJJ (1990) Selection for early flowering in progenies of interspecific crosses of ten species in the genus Dianthus. Euphytica 50:211–220

    Article  Google Scholar 

  • Stich K, Eidenberger T, Wurst F, Forkmann G (1992) Enzymatic conversion of dihydroflavonols to flavan-3,4-diols using flower extracts of Dianthus caryophyllus L. (carnation). Planta 187:103–108

    Article  PubMed  CAS  Google Scholar 

  • Takeda Y (1989) Horticultural history of carnation. In: Tsukamoto Y (ed) The grand dictionary of horticulture, vol 1. Shogakukan, Tokyo, pp 485–491. (In Japanese)

    Google Scholar 

  • Tanaka Y, Tsuda S, Kusumi T (1998) Metabolic engineering to modify flower color. Plant Cell Physiol 39:1119–1226

    Article  CAS  Google Scholar 

  • Tanase K, Onozaki T, Satoh S, Shibata M, Ichimura K (2008) Differential expression levels of ethylene biosynthetic pathway genes during senescence of long-lived carnation cultivars. Postharvest Biol Technol 47:210–217

    Article  CAS  Google Scholar 

  • Tanase K, Nishitani C, Hirakawa H, Isobe S, Tabata S, Ohmiya A, Onozaki T (2012) Transcriptome analysis of carnation (Dianthus caryophyllus L.) based on next-generation sequencing technology. BMC Genomics 13:292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas WD Jr (1954) The reaction of several carnation varieties to bacterial wilt. Phytopathology 44:713–715

    Google Scholar 

  • Tsuchiya Y, Minakami T, Kagito T (1965) Bacterial wilt of carnation. Ann Phytopathol Soc Jpn 30(5):268. (In Japanese)

    Google Scholar 

  • Tutin TG (1964) Dianthus L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, vol 1. Cambridge University Press, Cambridge, pp 188–204

    Google Scholar 

  • Uematsu S, Hosoya M, Sekiyama K (1991) Reaction of 126 commercial carnation varieties to Pseudomonas caryophylli. Proc Kanto-Tosan Plant Prot Soc 38:107–110. (In Japanese with English abstract)

    Google Scholar 

  • Ushio A, Onozaki T, Shibata M (2002) Estimation of polyploidy levels in Dianthus germplasms by flow cytometry. Bull Natl Inst Flor Sci 2:21–26. (In Japanese with English abstract)

    Google Scholar 

  • Vainstein A, Hillel J, Lavi U, Tzuri G (1991) Assessment of genetic relatedness in carnation by DNA fingerprint analysis. Euphytica 56:225–229

    Article  Google Scholar 

  • Veen H (1979) Effects of silver on ethylene synthesis and action in cut carnations. Planta 145:467–470

    Article  PubMed  CAS  Google Scholar 

  • Woltering EJ, van Doorn WG (1988) Role of ethylene in senescence of petals  — morphological and taxonomical relationships. J Exp Bot 39:1605–1616

    Article  CAS  Google Scholar 

  • Yagi M, Onozaki T, Taneya M, Watanabe H, Yoshimura T, Yoshinari T, Ochiai Y, Shibata M (2006) Construction of a genetic linkage map for the carnation by using RAPD and SSR markers and mapping quantitative trait loci (QTL) for resistance to bacterial wilt caused by Burkholderia caryophylli. J Jpn Soc Hortic Sci 75:166–172

    Article  CAS  Google Scholar 

  • Yagi M, Fujita Y, Yoshimura T, Onozaki T (2007) Comprehensive estimation of polyploidy level in carnation cultivars by flow cytometry. Bull Natl Inst Flor Sci 7:9–16. (In Japanese with English abstract)

    Google Scholar 

  • Yagi M, Onozaki T, Ikeda H, Tanikawa N, Shibata M, Yamaguchi T, Tanase K, Sumitomo K, Amano M (2010) Breeding process and characteristics of carnation ‘‘Karen Rouge’’ with resistance to bacterial wilt. Bull Natl Inst Flor Sci 10:1–10. (In Japanese with English abstract)

    Google Scholar 

  • Yagi M, Kimura T, Yamamoto T, Isobe S, Tabata S, Onozaki T (2012a) QTL analysis for resistance to bacterial wilt (Burkholderia caryophylli) in carnation (Dianthus caryophyllus) using an SSR-based genetic linkage map. Mol Breed 30:495–509

    Article  CAS  Google Scholar 

  • Yagi M, Yamamoto T, Kimura T, Isobe S, Tabata S, Onozaki T (2012b) QTL analysis for flower vase life in carnation. In: Book of abstracts – 24th International Eucarpia Symposium – Section ornamentals 129

    Google Scholar 

  • Yagi M, Yamamoto T, Isobe S, Hirakawa H, Tabata S, Tanase K, Yamaguchi H, Onozaki T (2013) Construction of a reference genetic linkage map for carnation (Dianthus caryophyllus L.). BMC Genomics 14:734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yagi M, Kosugi S, Hirakawa H, Ohmiya A, Tanase K, Harada T, Kishimoto K, Nakayama M, Ichimura K, Onozaki T, Yamaguchi H, Sasaki N, Miyahara T, Nishizaki Y, Ozeki Y, Nakamura N, Suzuki T, Tanaka Y, Sato S, Shirasawa K, Isobe S, Miyamura Y, Watanabe A, Nakayama S, Kishida Y, Kohara M, Tabata S (2014a) Sequence analysis of the genome of carnation (Dianthus caryophyllus L.). DNA Res 21:231–241

    Article  CAS  PubMed  Google Scholar 

  • Yagi M, Yamamoto T, Isobe S, Tabata S, Hirakawa H, Yamaguchi H, Tanase K, Onozaki T (2014b) Identification of tightly linked SSR markers for flower type in carnation (Dianthus caryophyllus L.). Euphytica 198:175–183

    Article  CAS  Google Scholar 

  • Yagi M, Shirasawa K, Waki T, Kume T, Isobe S, Tanase K, Yamaguchi H (2017a) Construction of an SSR and RAD marker-based genetic linkage map for carnation (Dianthus caryophyllus L.). Plant Mol Biol Rep 35:110–117

    Article  CAS  Google Scholar 

  • Yagi M, Shirasawa K, Isobe S, Tanase K, Yamaguchi H (2017b) QTL analysis for flower vase life in carnation breeding line 806-46b. Hortic Res (Japan) 16(Suppl. 2):531. (In Japanese)

    Google Scholar 

  • Yamaguchi T (1994) Carnation. In: Konishi K, Iwahori S, Kitagawa H, Yakuwa T (eds) Horticulture in Japan. Asakura Publishing Co. Ltd., Tokyo, pp 139–144

    Google Scholar 

  • Yamaguchi T, Himeno M, Onozaki T, Shibata M (1990) Exploration and collection of wild Dianthus species in the south-western region in Japan. Annu Rep Explor Introd Plant Genet Resour 6:73–82. (In Japanese with English abstract)

    Google Scholar 

  • Yoshida H, Akimoto H, Yamaguchi M, Shibata M, Habu Y, Iida S, Ozeki Y (2004) Alteration of methylation profiles in distinct cell lineages of the layers during vegetative propagation in carnation (Dianthus caryophyllus). Euphytica 135:247–253

    Article  CAS  Google Scholar 

  • Yoshimoto Y, Higeta D, Ito Y, Yoshida H, Hasebe M, Ozeki Y (2000) Isolation and characterization of a cDNA for phenylalanine ammonia-lyase (PAL) from Dianthus caryophyllus (carnation). Plant Biotechnol 17:325–329

    Article  CAS  Google Scholar 

  • Zhou X, Gui M, Zhao D, Chen M, Ju S, Li S, Lu Z, Mo X, Wang J (2013) Study on reproductive barriers in 4x-2x crosses in Dianthus caryophyllus L. Euphytica 189:471–483

    Article  CAS  Google Scholar 

  • Zhou X, Su Y, Yang X, Zhang Y, Li S, Gui M, Wang J (2017) The biological characters and polyploidy of progenies in hybridization in 4x-2x crosses in Dianthus caryophyllus. Euphytica 213:118

    Article  Google Scholar 

  • Zuker A, Tzfira T, Vainstein A (1998) Genetic engineering for cut-flower improvement. Biotechnol Adv 16:33–79

    Article  PubMed  CAS  Google Scholar 

  • Zuker A, Tzfira T, Ben-Meir H, Ovadis M, Shklarman E, Itzhaki H, Forkmann G, Martens S, Neta-Sharir I, Weiss D, Vainstein A (2002) Modification of flower color and fragrance by antisense suppression of the flavanone 3-hydroxylase gene. Mol Breed 9:33–41

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I sincerely thank Elsevier for the rights to reproduce Fig. 15.1 from Onozaki et al. (1999c) Scientia Horticulturae 82: 103–111, Springer Nature for Figs. 15.3 and 15.4 from Onozaki et al. (2004b) Euphytica 138: 255–262, and the Japanese Society for Horticultural Science (JSHS) for Fig. 15.2 from Onozaki et al. (2002) Horticultural Research (Japan) 1: 13–16; Fig. 15.8 from Onozaki et al. (2011b) Journal of Japanese Society for Horticultural Science 80: 486–498; Fig. 15.9 from Onozaki et al. (2015) The Horticulture Journal 84: 58–68; Fig. 15.10 from Onozaki et al. (2018) The Horticulture Journal 87: 106–114; and Fig. 15.11 from Onozaki et al. (2011a) Horticultural Research (Japan) 10: 161–172.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Onozaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Onozaki, T. (2018). Dianthus. In: Van Huylenbroeck, J. (eds) Ornamental Crops. Handbook of Plant Breeding, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-90698-0_15

Download citation

Publish with us

Policies and ethics