Skip to main content

Azalea

  • Chapter
  • First Online:
Ornamental Crops

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 11))

Abstract

Belgian pot azaleas are presumed to have been created from a relatively narrow genetic basis of collector’s material introduced into botanical gardens and private collections from Eastern Asia. Both Japanese and Chinese traditional varieties, some of them with a cultivation history of more than 400 years, were at the basis. The history of Belgian pot azalea started about 200 or more years ago; the first Belgium-bred and commercially released cultivar ‘Madame Van der Cruyssen’ was introduced in 1867. Historical research supported by phylogenetic and molecular marker studies revealed a genetic continuum must be accepted which spans many species of the Tsutsusi subgenus. This continuum has been exploited in the past by both Asian and European breeders and still proves to be a good source for genetic variation and interesting forms. Until today, major improvements have been obtained by conventional crossbreeding and selection of spontaneous bud sports. Some of the historically major breakthroughs in breeding of pot azalea are (1) cultivars that could easily grow on their own roots, eliminating the need for grafting; (2) early (fall) flowering cultivars, particularly ‘Hellmut Vogel’; and (3) longer shelf life. Breeding goals have traditionally been driven by mass production aims and consumer wishes. From small to large double flowers and from colored to white flowers, the consumers are always in for something new, and their desires can change very quickly. Today, flower characteristics are still the most important criteria for selection. In addition, leaf shape and color, shininess of leaf surface, presence or absence of hairs, growth vigor, plant architecture, earliness of flowering, and postproduction quality (longevity of flowering, absence of brown bud scales) are other important traits for breeding. More recently, breeding for biotic resistance gained attention. Especially resistance against some fungal diseases has become a major selection criterion. Furthermore, candidate cultivars in an early stage are already being tested under commercial growing conditions to evaluate their reaction to specific culture practices as pinching, application of plant growth regulators, and reaction time during forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bean WJ (1980) Trees and shrubs, hardy in the British Isles, vol. III. John Murray, London

    Google Scholar 

  • Bowers C (1936) Rhododendrons and azaleas. The MacMillan Company, New York. 525pp

    Google Scholar 

  • Brown CL, McAlpine RG, Kormanik PP (1967) Apical dominance and form in woody plants: a reappraisal. Am J Bot 54:153–162

    Article  Google Scholar 

  • Chamberlain DF, Rae SJ (1990) A revision of Rhododendron IV subgenus Tsutsusi. Edinb J Bot 47:89–200

    Article  Google Scholar 

  • Chamberlain DF, Hyam G, Argent G, Fairweather G, Walter K (1996) The genus Rhododendron. Its classification & synonymy. Royal Botanical Garden, Edinburgh

    Google Scholar 

  • Cheon KS, Nakatsuka A, Kobayashi N (2016) Mutant PI/GLO homolog confers the hose-in-hose flower phenotype in Kurume azaleas. Hort J 85:380–387

    Article  CAS  Google Scholar 

  • Cheon KS, Nakatsuka A, Tasaki K, Kobayashi N (2017a) Floral morphology and MADS gene expression in double-flowered Japanese Evergreen azalea. Hort J 86:269–276

    Article  Google Scholar 

  • Cheon KS, Nakatsuka A, Gobara Y, Kobayashi N (2017b) Mutant RoPI-1 allele-based marker development for selection of the hose-in-hose flower phenotype in Rhododendron obtusum cultivars Euphytica. Hort J 213:1–8. https://doi.org/10.1007/s10681-016-1808-x

    Article  CAS  Google Scholar 

  • Christiaens A (2014) Factors affecting flower development and quality in Rhododendron simsii. PhD thesis, Ghent University, Ghent, Belgium, 145pp

    Google Scholar 

  • Cline MG (1991) Apical dominance. Bot Rev 57:318–358

    Article  Google Scholar 

  • Cox PA, Cox KNE (1995) Encyclopedia of Rhododendron hybrids. Batsford Ltd, London

    Google Scholar 

  • Cox PA, Cox KNE (1997) Encyclopedia of Rhododendron species. Glendoick Publishing, Perth

    Google Scholar 

  • Cullen J (1991) The logic of Rhododendron classification. Rhododendrons (1992). R Hortic Soc Lond 44:14–19

    Google Scholar 

  • De Keyser E, Pauwels E, Heungens K, De Riek J (2008) Development of supporting techniques for pot azalea (Rhododendron simsii hybrids) breeding focused on plant quality, disease resistance and enlargement of the assortment. Acta Hortic 766:361–366

    Article  Google Scholar 

  • De Keyser E, Shu QY, Van Bockstaele E, De Riek J (2010) Multipoint-likelihood maximization mapping on 4 segregating populations to achieve an integrated framework map for QTL analysis in pot azalea (Rhododendron simsii hybrids). BMC Mol Biol 11:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Keyser E, Desmet L, Van Bockstaele E, De Riek J (2013a) How to perform RT-qPCR accurately in plant species? A case study on flower color gene expression in an azalea (Rhododendron simsii hybrids) mapping population. BMC Mol Biol 14:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Keyser E, Lootens P, Van Bockstaele E, De Riek J (2013b) Image analysis for QTL mapping of flower color and leaf characteristics in pot azalea (Rhododendron simsii hybrids). Euphytica 189:445–460

    Article  Google Scholar 

  • De Loose R (1969) The flower pigments of the Belgian hybrids of Rhododendron simsii and other species and varieties from Rhododendron subseries obtusum. Phytochemistry 88:253–259

    Article  Google Scholar 

  • De Loose R (1979) Characterisation of Rhododendron simsii planch. Cultivars by flavonoid and isozyme markers. Sci Hortic 11:175–182

    Article  Google Scholar 

  • De Riek J, Dendauw J, Mertens M, De Loose M, Heursel J, Van Bockstaele E (1999) Validation of criteria for the selection of AFLP markers to assess the genetic variation of a breeders’ collection of evergreen azaleas. Theor Appl Genet 99:1155–1165

    Article  Google Scholar 

  • De Riek J, Scariot V, Eeckhaut T, De Keyser E, Kobayashi N, Handa T (2008) The potential of molecular analysis and interspecific hybridization for azalea phylogenetic research. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution, vol. 1, part E: phanerogams – angiosperm. Science Publishers, Enfield, NH

    Google Scholar 

  • De Schepper S, Debergh P, Van Bockstaele E, De Loose M (2001a) Molecular characterisation of flower color genes in azalea sports (Rhododendron simsii hybrids). Acta Hortic 552:143–150

    Article  Google Scholar 

  • De Schepper S, Leus L, Mertens M, Debergh P, Van Bockstaele E, De Loose M (2001b) Somatic polyploidy and its consequences for flower coloration and flower morphology in azalea. Plant Cell Rep 20:583–590

    Article  CAS  Google Scholar 

  • De Schepper S, Debergh P, Van Bockstaele E, De Loose M, Gerats A, Depicker A (2003) Genetic and epigenetic aspects of somaclonal variation: flower color bud sports in azalea, a case study. S Afr J Bot 69:117–128

    Article  Google Scholar 

  • De Schepper S, Leus L, Eeckhaut T, Van Bockstaele E, Debergh P, De Loose M (2004) Somatic polyploid petals: regeneration offers new roads for breeding Belgian pot azaleas. Plant Cell Tissue Org Cult 76:183–188

    Article  Google Scholar 

  • Demasi S (2015) Iron deficiency tolerance in evergreen azaleas (Rhododendron spp.). PhD thesis, University Torino, Italy, 121pp

    Google Scholar 

  • Eeckhaut T (2003) Ploidy breeding and interspecific hybridization in Spathiphyllum and woody ornamentals. PhD thesis, Ghent University, Ghent, Belgium, 126pp

    Google Scholar 

  • Eeckhaut T, Van Huylenbroeck J, De Schepper S, Van Labeke MC (2006) Breeding for polyploidy in Belgian azalea (Rhododendron simsii hybrids). Acta Hortic 714:113–118

    Article  Google Scholar 

  • Galle F (1987) Azaleas. Timber Press, Portland, Oregon

    Google Scholar 

  • Goetsch L, Eckert AJ, Hall BD, Hoot SB (2005) The molecular systematics of Rhododendron (Ericaceae): a phylogeny based upon RPB2 gene sequences. Syst Bot 30(3):616–626

    Article  Google Scholar 

  • Handa T, Eto J, Kita K, Kobayashi N (2002) Genetic diversity of Japanese wild evergreen azaleas in Kyusyu (south main island of Japan) characterized by AFLP. Acta Hortic 572:159–162

    Article  CAS  Google Scholar 

  • Heursel J (1999) Azalea’s: oorsprong, veredeling en cultivars. Tielt, Lannoo

    Google Scholar 

  • Heursel J, Horn W (1977) A hypothesis on the inheritance of flower colors and flavonoids in Rhododendron simsii planch. Zeitschrift für Pflanzenzüchtung 79:238–249

    CAS  Google Scholar 

  • Heursel J, Volckaert E (1980) Azaleateelt. Ministerie van Landbouw, Brussel, Belgium, 160p

    Google Scholar 

  • Heyting J (1970) Hybrids between elepidote and lepidote rhododendrons. Q Bull Am Rhodod Soc 24:97–98

    Google Scholar 

  • Horn W (2002) Breeding methods and breeding research. In: Vainstein A (ed) Breeding for ornamentals: classical and molecular approaches. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 47–84

    Chapter  Google Scholar 

  • Huang MR, Qiang HL (1984) Rhododendron. China Forestry Publishing House, Beijing, China

    Google Scholar 

  • Irving E, Hebda R (1993) Concerning the origin and distribution of rhododendrons. J Am Rhodod Soc 47(3):139–162

    Google Scholar 

  • Ito I, Creech JL (1984) A brocade pillow: azaleas of old Japan. Weatherhill, New York and Tokyo

    Google Scholar 

  • Kobayashi N (2013) Evaluation and application of evergreen azalea resources of Japan. Acta Hortic 990:213–219

    Article  Google Scholar 

  • Kobayashi N, Handa T, Yoshimura K, Tsumura Y, Arisumi K, Takayanagi K (2000) Evidence for introgressive hybridization based on chloroplast DNA polymorphisms and morphological variation in wild evergreen azalea populations in the Kirishima Mountains, Japan. Edinb J Bot 57:209–219

    Article  Google Scholar 

  • Kobayashi N, Handa T, Miyajima I, Arisumi K, Takayanagi K (2007) Introgressive hybridization between Rhododendron kiusianum and R. kaempferi (Ericaceae) in Kyushu, Japan based on chloroplast DNA markers. Edinb J Bot 64:283–293

    Article  Google Scholar 

  • Kobayashi N, Mizuta D, Nakatsuka A, Akabane M (2008) Attaining intersubgeneric hybrids in fragrant azalea breeding and the inheritance of organelle DNA. Euphytica 159:67–72

    Article  CAS  Google Scholar 

  • Kobayashi N, Ishihara M, Ohtani M, Cheon KS, Mizuta D, Tasaki K, Nakatsuka A (2010) Evaluation and application of the long-lasting flower trait (misome-sho) of azalea cultivars. Acta Hortic 855:165–168

    Article  Google Scholar 

  • Kron KA (1993) A revision of Rhododendron section Pentanthera. Edinb J Bot 50:249–363

    Article  Google Scholar 

  • Kron KA (1997) Phylogenetic relationships of Rhododendroideae (Ericaceae). Am J Bot 84:973–980

    Article  CAS  PubMed  Google Scholar 

  • Kron K (2000) Evolutionary relationships of azaleas and rhododendrons. In: Jacobs R (ed) Jaarboek van de Belgische Dendrologische vereniging, Belgische Dendrologie Belge BDB, Bonheiden, Belgium, pp 30–40

    Google Scholar 

  • Kron KA (2002) Phylogenetic relationships and major clades of Rhododendron (Rhodoreae, Ericoideae, Ericaceae). In: Argent G, McFarlane M (eds) Rhododendrons in horticulture and science. Royal Botanic Garden, Edinburgh, pp 79–85

    Google Scholar 

  • Kron KA, Powell E (2009) Molecular systematics of Rhododendron subgenus Tsutsusi (Rhodoreae, Ericoideae, Ericaceae). Edinb J Bot 66(1):81–95

    Article  Google Scholar 

  • Kurashige Y, Mine M, Kobayashi N, Handa T, Takayanagi K, Yukawa T (1998) Investigation of sectional relationships in the genus Rhododendron (Ericaceae) based on matK sequences. J Jpn Bot 73:143–154

    Google Scholar 

  • Leach D (1961) Rhododendrons of the world. Charles Scribner’s Sons, New York

    Google Scholar 

  • Lee FP (1958) The azalea book. Van Nostrand Company Inc., Princeton, NJ. American Horticultural Society

    Google Scholar 

  • Li Y, Yan HF, Ge XJ (2012) Phylogeographic analysis and environmental niche modeling of widespread shrub Rhododendron simsii in China reveals multiple glacial refugia during the last glacial maximum. J Syst Evol 50:362–373

    Article  Google Scholar 

  • Luypaert G (2015) The broad mite, Polyphagotarsonemus latus, and its interactions with pot azalea, Rhododendron simsii hybrid. PhD thesis, Ghent University, Ghent, Belgium, 191pp

    Google Scholar 

  • Luypaert G, Van Huylenbroeck J, De Riek J, De Clercq P (2014) Screening for broad mite susceptibility in Rhododendron simsii. J Plant Dis Prot 121:260–269

    Article  Google Scholar 

  • Luypaert G, Van Huylenbroeck J, De Riek J, Mechant E, Pauwels E, De Clercq P (2015) Opportunities to breed for broad mite resistance in Rhododendron simsii hybrids. Acta Hortic 1087:479–484

    Article  Google Scholar 

  • Mertens M, Heursel J, Van Bockstaele E, De Loose M (2000) Inheritance of foreign genes in transgenic azalea plants generated by Agrobacterium-mediated transformation. Acta Hortic 521:127–132

    Article  CAS  Google Scholar 

  • Mizuta D, Nakatsuka A, Kobayashi N (2008) Development of multiplex PCR markers to distinguish evergreen and deciduous azaleas. Plant Breed 127:533–535

    Article  CAS  Google Scholar 

  • Mizuta D, Ban T, Miyajima I, Nakatsuka A, Kobayashi N (2009) Comparison of flower color with anthocyanin composition patterns in evergreen azalea. Sci Hortic 122:594–602

    Article  CAS  Google Scholar 

  • Mizuta D, Nakatsuka A, Miyajima I, Ban T, Kobayashi N (2010) Pigment composition patterns and expression analysis of flavonoid biosynthesis genes in the petals of evergreen azalea ‘Oomurasaki’ and its red flower sport. Plant Breed 129:558–562

    Article  CAS  Google Scholar 

  • Nakatsuka A, Mizuta D, Kii Y, Miyajima I, Kobayashi N (2008) Isolation and expression analysis of flavonoid biosynthesis genes in evergreen azalea. Sci Hortic 118:314–320

    Article  CAS  Google Scholar 

  • Pratt C (1980) Somatic selection & chimeras. In: Moore JN, Janick J (eds) Methods in fruit breeding. Purdue University Press, West Lafayette, IN, pp 172–185

    Google Scholar 

  • Preil W, Ebbinghaus R (1985) Bastardierungen von Topfazaleen (Rhododendron simsii) mit anderen Rhododendron-Arten. Rhododendron und immergrüne Laubgehölze, Jahrbuch, pp 85–92

    Google Scholar 

  • Rouse J (1993) Inter- and intraspecific pollinations involving Rhododendron species. J Am Rhodod Soc 47:23–45

    Google Scholar 

  • Samyn G, De Schepper S, Van Bockstaele E (2002) Adventitious shoot regeneration and appearance of sports in several azalea cultivars. Plant Cell Tissue Org Cult 70:223–227

    Article  CAS  Google Scholar 

  • Scariot V (2006) The DNA-typing of ornamental plants: Evergreen azaleas (Rhododendron spp.) and old garden roses (Rosa spp.). PhD thesis, University of Torino, Turin, Italy

    Google Scholar 

  • Scariot V, Handa T, De Riek J (2007) A contribution to the classification of evergreen azalea cultivars located in the Lake Maggiore area (Italy) by means of AFLP markers. Euphytica 158:47–66

    Article  Google Scholar 

  • Scheerlinck H, Delbeke V, Hendriks WJ et al (1938) Tuinbouw encyclopedie. De Sikkel, Antwerpen, Belgium

    Google Scholar 

  • Schmitz G, Theres K (2005) Shoot and inflorescence branching. Curr Opin Plant Biol 8:506–511

    Article  CAS  PubMed  Google Scholar 

  • Spethmann W (1987) A new infrageneric classification and phylogenetic trends in the genus Rhododendron (Ericaceae). Plant Syst Evol 157:9–31

    Article  Google Scholar 

  • Salley H, Greer H (1992) Rhododendron hybrids, 2nd edn. Timber Press, Portland, Oregon. 344pp

    Google Scholar 

  • Tasaki K, Nakatsuka A, Cheon KS, Kobayashi N (2014) Expression of MADS-box genes in narrow-petaled cultivars of Rhododendron macrosepalum Maxim. J Jpn Soc Hortic Sci 83(1):52–58

    Article  CAS  Google Scholar 

  • Tasaki K, Nakatsuka A, Cheon K, Kobayashi N (2015) Inheritance of the narrow leaf mutation in traditional Japanese evergreen azaleas. Euphytica 206(3):649–656

    Article  CAS  Google Scholar 

  • Ureshino K, Miyajima I, Akabane M (1998) Effectiveness of three-way crossing for the breeding of yellow-flowered evergreen azalea. Euphytica 104:113–118

    Article  Google Scholar 

  • Van Huylenbroeck J, Calsyn E (2011) Cryopreservation of an azalea germplasm collection. Acta Hortic 908:489–493

    Article  Google Scholar 

  • Van Huylenbroeck J, Calsyn E, De Keyser E, Luypaert G (2015) Breeding for biotic stress resistance in Rhododendron simsii. Acta Hortic 1104:375–380

    Article  Google Scholar 

  • Van Huylenbroeck J, Calsyn E, De Keyser E, Eeckhaut T, De Riek J (2018) Use of genetic resources to develop new commercial Rhododendron simsii hybrids. Acta Hortic. (in press)

    Google Scholar 

  • Van Trier H (2012) Gentse azalea. Stichting Kunstboek, Oostkamp

    Google Scholar 

  • Verleysen H, Van Bockstaele E, Debergh P (2005) An encapsulation–dehydration protocol for cryopreservation of the azalea cultivar ‘Nordlicht’ (Rhododendron simsii Planch.). Sci Hortic 106:402–414

    Article  CAS  Google Scholar 

  • Voss D (2001) What is an azalea? J Am Rhodod Soc 55:188–192

    Google Scholar 

  • Xu JJ, Zhao B, Shen HF, Huang WM, Yuan LX (2016) Assessment of genetic relationship among Rhododendron cultivars using amplified fragment length polymorphism and inter-simple sequence repeat markers. Genet Mol Res 15(3). https://doi.org/10.4238/gmr.15038467

  • Yamazaki T (1996) A revision of the genus Rhododendron in Japan, Taiwan, Korea, and Sakhalin. Tsumura Laboratory, Tokyo

    Google Scholar 

  • Zhou H, Liao J, Xia YP, Tang YW (2013) Determination of genetic relationships between evergreen azalea cultivars in China using AFLP markers. J Zhejiang Univ Sci 14(4):299–308

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan De Riek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Riek, J., De Keyser, E., Calsyn, E., Eeckhaut, T., Van Huylenbroeck, J., Kobayashi, N. (2018). Azalea. In: Van Huylenbroeck, J. (eds) Ornamental Crops. Handbook of Plant Breeding, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-90698-0_11

Download citation

Publish with us

Policies and ethics