Skip to main content

Stem Cell Applications in Spinal Cord Injury: A Primer

  • Chapter
  • First Online:
Stem Cell Genetics for Biomedical Research

Abstract

Despite advances in perioperative care, spinal cord injury (SCI) continues to be a devastating neurological condition. As SCI pathophysiology is multifaceted and time-dependent, the adaptive nature of cell therapy has been considered a promising approach for addressing these issues. In this chapter, we review the primary therapeutic targets of stem cell therapy including neuroprotection and neuroregeneration. Further, we present an in-depth review of the primary stem cell candidates (neural stem/progenitor and mesenchymal stem cells), a brief discussion of other cell types, and the status of combinatorial therapies for SCI. In closing, we discuss the translational challenges at the frontier and the progress made at the trial stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, Vassena R, Bilić J, Pekarik V, Tiscornia G, Edel M, Boué S, Belmonte JCI (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26(11):1276–1284

    Article  PubMed  CAS  Google Scholar 

  2. Abrajano JJ, Qureshi IA, Gokhan S, Molero AE, Zheng D, Bergman A, Mehler MF (2010) Corepressor for element-1-silencing transcription factor preferentially mediates gene networks underlying neural stem cell fate decisions. Proc Natl Acad Sci U S A 107(38):16685–16690

    Article  PubMed  PubMed Central  Google Scholar 

  3. Agbay, Andrew; Edgar, John M; Robinson, Meghan; Styan, Tara; Wilson, Krista; Schroll, Julian; Ko, Junghyuk; Khadem Mohtaram, Nima, ; Jun, Martin Byung-Guk; Willerth, Stephanie M.(2016). Biomaterial strategies for delivering stem cells as a treatment for spinal cord injury. Cells Tissues Organs 202(1–2): 42–51

    Article  PubMed  CAS  Google Scholar 

  4. Ahuja CS, Fehlings M (2016) Concise review: bridging the gap: novel neuroregenerative and neuroprotective strategies in spinal cord injury. Stem Cells Transl Med 5(7):914–924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ahuja CS, Nori S, Tetreault L, Wilson J, Kwon B, Harrop J, Choi D, Fehlings MG (2017) Traumatic spinal cord injury-repair and regeneration. Neurosurgery 80(3S):S9–S22

    Article  PubMed  Google Scholar 

  6. Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, Fehlings MG (2017) Traumatic spinal cord injury. Nat Rev Dis Primers 3:17018

    Article  PubMed  Google Scholar 

  7. Akkermann R, Beyer F, Küry P (2017) Heterogeneous populations of neural stem cells contribute to myelin repair. Neural Regen Res 12(4):509–517

    Article  PubMed  PubMed Central  Google Scholar 

  8. de Almeida PE, Meyer EH, Kooreman NG, Diecke S, Dey D, Sanchez-Freire V, Hu S, Ebert A, Odegaard J, Mordwinkin NM, Brouwer TP, Lo D, Montoro DT, Longaker MT, Negrin RS, Wu JC (2014) Transplanted terminally differentiated induced pluripotent stem cells are accepted by immune mechanisms similar to self-tolerance. Nat Commun 5:3903

    Article  PubMed  CAS  Google Scholar 

  9. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124(3):319–335

    Article  PubMed  CAS  Google Scholar 

  10. Alunni A, Bally-Cuif L (2016) A comparative view of regenerative neurogenesis in vertebrates. Development 143(5):741–753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton SA, Ding S (2011) Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9(2):113–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Anderson AJ, Piltti KM, Hooshmand MJ, Nishi RA, Cummings BJ (2017) Preclinical efficacy failure of human CNS-derived stem cells for use in the pathway study of cervical spinal cord injury. Stem Cell Reports 8(2):249–263

    Article  PubMed  PubMed Central  Google Scholar 

  13. Araki R, Uda M, Hoki Y, Sunayama M, Nakamura M, Ando S, Sugiura M, Ideno H, Shimada A, Nifuji A, Abe M (2013) Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature 494(7435):100–104

    Article  PubMed  CAS  Google Scholar 

  14. Assinck P, Duncan GJ, Plemel JR, Lee MJ, Stratton JA, Manesh SB, Liu J, Ramer LM, Kang SH, Bergles DE, Biernaskie J, Tetzlaff W (2017) Myelinogenic plasticity of oligodendrocyte precursor cells following spinal cord contusion injury. J Neurosci 37(36):8635–8654

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Badner A, Vawda R, Laliberte A, Hong J, Mikhail M, Jose A, Dragas R, Fehlings M (2016) Early intravenous delivery of human brain stromal cells modulates systemic inflammation and leads to vasoprotection in traumatic spinal cord injury. Stem Cells Transl Med 5(8):991–1003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Badner A, Siddiqui AM, Fehlings MG (2017) Spinal cord injuries: how could cell therapy help? Expert Opin Biol Ther 17(5):529–541

    Article  PubMed  Google Scholar 

  17. Barbosa JS, Ninkovic J (2016) Adult neural stem cell behavior underlying constitutive and restorative neurogenesis in zebrafish. Neurogenesis (Austin, TX) 3(1):e1148101

    Article  CAS  Google Scholar 

  18. Barnabé-Heider F, Göritz C, Sabelström H, Takebayashi H, Pfrieger FW, Meletis K, Frisén J (2010) Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell 7(4):470–482

    Article  PubMed  CAS  Google Scholar 

  19. Becker AJ, McCulloch EA, Till JE (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–454

    Article  PubMed  CAS  Google Scholar 

  20. Berberoglu MA, Dong Z, Li G, Zheng J, Trejo Martinez L d CG, Peng J, Wagle M, Reichholf B, Petritsch C, Li H, Pleasure SJ, Guo S (2014) Heterogeneously expressed fezf2 patterns gradient Notch activity in balancing the quiescence, proliferation, and differentiation of adult neural stem cells. J Neurosci Off J Soc Neurosci 34(42):13911–13923

    Article  CAS  Google Scholar 

  21. Bonaguidi MA, Wheeler MA, Shapiro JS, Stadel RP, Sun GJ, Ming G-l, Song H (2011) In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145(7):1142–1155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Bond AM, Ming G-L, Song H (2015) Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell 17(4):385–395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Breunig JJ, Haydar TF, Rakic P (2011) Neural stem cells: historical perspective and future prospects. Neuron 70(4):614–625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Briggs SF, Reijo Pera RA (2014) X chromosome inactivation: recent advances and a look forward. Curr Opin Genet Dev 28:78–82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Brommer B, Engel O, Kopp MA, Watzlawick R, Müller S, Prüss H, Chen Y, DeVivo MJ, Finkenstaedt FW, Dirnagl U, Liebscher T, Meisel A, Schwab JM (2016) Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level. Brain J Neurol 139(Pt 3):692–707

    Article  Google Scholar 

  26. Bulstrode H, Johnstone E, Marques-Torrejon MA, Ferguson KM, Bressan RB, Blin C, Grant V, Gogolok S, Gangoso E, Gagrica S, Ender C, Fotaki V, Sproul D, Bertone P, Pollard SM (2017) Elevated FOXG1 and SOX2 in glioblastoma enforces neural stem cell identity through transcriptional control of cell cycle and epigenetic regulators. Genes Dev 31(8):757–773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Bunge MB (2016) Efficacy of Schwann cell transplantation for spinal cord repair is improved with combinatorial strategies: improving Schwann cell transplantation. J Physiol 594(13):3533–3538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Cao Q, He Q, Wang Y, Cheng X, Howard RM, Zhang Y, DeVries WH, Shields CB, Magnuson DSK, Xu X-M, Kim DH, Whittemore SR (2010) Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury. J Neurosci Off J Soc Neurosci 30(8):2989–3001

    Article  CAS  Google Scholar 

  29. Chambers SM, Studer L (2011) Cell fate plug and play: direct reprogramming and induced pluripotency. Cell 145(6):827–830

    Article  PubMed  CAS  Google Scholar 

  30. Chhabra HS, Lima C, Sachdeva S, Mittal A, Nigam V, Chaturvedi D, Arora M, Aggarwal A, Kapur R, Khan TAH (2009) Autologous mucosal transplant in chronic spinal cord injury: an Indian Pilot Study. Spinal Cord 47:887–895

    Article  PubMed  CAS  Google Scholar 

  31. Dlouhy BJ, Awe O, Rao RC, Kirby PA, Hitchon PW (2014) Autograft-derived spinal cord mass following olfactory mucosal cell transplantation in a spinal cord injury patient. J Neurosurg Spine 21:618–622

    PubMed  Google Scholar 

  32. Dominguez AA, Lim WA, Qi LS (2015) Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17(1):5–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Efe JA, Hilcove S, Kim J, Zhou H, Ouyang K, Wang G, Chen J, Ding S (2011) Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol 13(3):215–222

    Article  PubMed  CAS  Google Scholar 

  34. Fan C, Li X, Xiao Z, Zhao Y, Liang H, Wang B, Han S, Li X, Xu B, Wang N, Liu S, Xue W, Dai J (2017) A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair. Acta Biomater 51:304–316

    Article  PubMed  CAS  Google Scholar 

  35. Farrukh A, Ortega F, Fan W, Marichal N, Paez JI, Berninger B, Campo AD, Salierno MJ (2017) Bifunctional hydrogels containing the laminin motif IKVAV promote neurogenesis. Stem Cell Reports 9(5):1432–1440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Faulkner SD, Vawda R, Fehlings MG (2014) Adult-derived pluripotent stem cells. World Neurosurg 82(3–4):500–508

    Article  PubMed  Google Scholar 

  37. Fehlings MG, Tator CH (1995) The relationships among the severity of spinal cord injury, residual neurological function, axon counts, and counts of retrogradely labeled neurons after experimental spinal cord injury. Exp Neurol 132(2):220–228

    Article  PubMed  CAS  Google Scholar 

  38. Fehlings MG, Theodore N, Harrop J, Maurais G, Kuntz C, Shaffrey CI, Kwon BK, Chapman J, Yee A, Tighe A, McKerracher L (2011) A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J Neurotrauma 28(5):787–796

    Article  PubMed  Google Scholar 

  39. Féron F, Perry C, Cochrane J et al (2005) Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 128(Pt 12):2951–2960

    Article  PubMed  Google Scholar 

  40. Forostyak S, Jendelova P, Sykova E (2013) The role of mesenchymal stromal cells in spinal cord injury, regenerative medicine and possible clinical applications. Biochimie 95(12):2257–2270

    Article  PubMed  CAS  Google Scholar 

  41. Gwak S-J, Macks C, Jeong DU, Kindy M, Lynn M, Webb K, Lee JS (2017) RhoA knockdown by cationic amphiphilic copolymer/siRhoA polyplexes enhances axonal regeneration in rat spinal cord injury model. Biomaterials 121:155–166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Han H-W, Hsu S-H (2017) Chitosan derived co-spheroids of neural stem cells and mesenchymal stem cells for neural regeneration. Colloids Surf B Biointerfaces 158:527–538

    Article  PubMed  CAS  Google Scholar 

  43. Han Q, Jin W, Xiao Z, Ni H, Wang J, Kong J, Wu J, Liang W, Chen L, Zhao Y, Chen B, Dai J (2010) The promotion of neural regeneration in an extreme rat spinal cord injury model using a collagen scaffold containing a collagen binding neuroprotective protein and an EGFR neutralizing antibody. Biomaterials 31(35):9212–9220

    Article  PubMed  CAS  Google Scholar 

  44. His W Sr (1874) Unsere Körperform und das physiologische Problem ihrer Entstehung : Briefe an einen befreundeten Naturforscher. F.C.W. Vogel, Leipzig

    Book  Google Scholar 

  45. His W Sr (1886) Zur Geschichte der menschlichen Rückenmarkes und der Nervenwurzeln. Bei S. Hirzel, Leipzig, p 13

    Google Scholar 

  46. His W Sr (1904) Die Entwicklung des menschlichen Gehirns während der ersten Monate : Untersuchungsergebnisse. Leipzig, Hirzel

    Book  Google Scholar 

  47. Huangfu D, Osafune K, Maehr R et al (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26(11):1269–1275

    Article  PubMed  CAS  Google Scholar 

  48. Ibarra A, Jiménez A, Cortes C, Correa D (2007) Influence of the intensity, level and phase of spinal cord injury on the proliferation of T cells and T-cell-dependent antibody reactions in rats. Spinal Cord 45(5):380–386

    Article  PubMed  CAS  Google Scholar 

  49. Ieda M, Fu J-D, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142(3):375–386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kamada T, Koda M, Dezawa M, Anahara R, Toyama Y, Yoshinaga K, Hashimoto M, Koshizuka S, Nishio Y, Mannoji C, Okawa A, Yamazaki M (2011) Transplantation of human bone marrow stromal cell-derived Schwann cells reduces cystic cavity and promotes functional recovery after contusion injury of adult rat spinal cord. Neuropathology Off J Japanese Soc Neuropathol 31(1):48–58

    Article  Google Scholar 

  51. Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead CM, Fehlings MG (2006) Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci Off J Soc Neurosci 26(13):3377–3389

    Article  CAS  Google Scholar 

  52. Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Schut D, Fehlings MG (2010) Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J Neurosci Off J Soc Neurosci 30(5):1657–1676

    Article  CAS  Google Scholar 

  53. Kawamura A, Miyagawa S, Fukushima S, Kawamura T, Kashiyama N, Ito E, Watabe T, Masuda S, Toda K, Hatazawa J, Morii E, Sawa Y (2016) Teratocarcinomas arising from allogeneic induced pluripotent stem cell-derived cardiac tissue constructs provoked host immune rejection in mice. Sci Rep 6:19464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Keirstead HS (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25(19):4694–4705

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Khazaei M, Siddiqui AM, Fehlings MG (2014) The potential for iPS-derived stem cells as a therapeutic strategy for spinal cord injury: opportunities and challenges. J Clin Med 4(1):37–65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Khazaei M, Ahuja CS, Fehlings MG (2017) Induced pluripotent stem cells for traumatic spinal cord injury. Front Cell Dev Biol 4:152

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kim D, Kim C-H, Moon J-I, Chung Y-G, Chang M-Y, Han B-S, Ko S, Yang E, Cha KY, Lanza R, Kim K-S (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, Lipton SA, Zhang K, Ding S (2011) Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A 108(19):7838–7843

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kim YC, Kim YH, Kim JW, Ha KY (2016) Transplantation of mesenchymal stem cells for acute spinal cord injury in rats: comparative study between intralesional injection and scaffold based transplantation. J Korean Med Sci 31(9):1373–1382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kizil C, Dudczig S, Kyritsis N, Machate A, Blaesche J, Kroehne V, Brand M (2012) The chemokine receptor cxcr5 regulates the regenerative neurogenesis response in the adult zebrafish brain. Neural Dev 7:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Kizil C, Kyritsis N, Dudczig S, Kroehne V, Freudenreich D, Kaslin J, Brand M (2012) Regenerative neurogenesis from neural progenitor cells requires injury-induced expression of Gata3. Dev Cell 23(6):1230–1237

    Article  PubMed  CAS  Google Scholar 

  62. Kizil C, Kyritsis N, Brand M (2015) Effects of inflammation on stem cells: together they strive? EMBO Rep 16(4):416–426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Kong X-B, Tang Q-Y, Chen X-Y, Tu Y, Sun S-Z, Sun Z-L (2017) Polyethylene glycol as a promising synthetic material for repair of spinal cord injury. Neural Regen Res 12(6):1003–1008

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kruse V, Hamann C, Monecke S, Cyganek L, Elsner L, Hübscher D, Walter L, Streckfuss-Bömeke K, Guan K, Dressel R, Björkström NK (2015) Human induced pluripotent stem cells are targets for allogeneic and autologous natural killer (NK) cells and killing is partly mediated by the activating NK receptor DNAM-1. PLoS One 10(5):e0125544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Kwon BK, Hillyer J, Tetzlaff W (2010) Translational research in spinal cord injury: a survey of opinion from the SCI community. J Neurotrauma 27(1):21–33

    Article  PubMed  Google Scholar 

  66. Kyritsis N, Kizil C, Brand M (2014) Neuroinflammation and central nervous system regeneration in vertebrates. Trends Cell Biol 24(2):128–135

    Article  PubMed  CAS  Google Scholar 

  67. Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ, Ku S, Martynova M, Semechkin R, Galat V, Gottesfeld J, Belmonte JCI, Murry C, Keirstead HS, Park H-S, Schmidt U, Laslett AL, Muller F-J, Nievergelt CM, Shamir R, Loring JF (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8(1):106–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Lee SH, Kim Y, Rhew D, Kim A, Jo KR, Yoon Y, Choi KU, Jung T, Kim WH, Kweon O-K (2016) Impact of local injection of brain-derived neurotrophic factor-expressing mesenchymal stromal cells (MSCs) combined with intravenous MSC delivery in a canine model of chronic spinal cord injury. Cytotherapy. https://doi.org/10.1016/j.jcyt.2016.09.014

  69. Lehmann M, Fournier A, Selles-Navarro I, Dergham P, Sebok A, Leclerc N, Tigyi G, McKerracher L (1999) Inactivation of Rho signaling pathway promotes CNS axon regeneration. J Neurosci 19(17):7537–7547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Leibinger M, Müller A, Gobrecht P, Diekmann H, Andreadaki A, Fischer D (2013) Interleukin-6 contributes to CNS axon regeneration upon inflammatory stimulation. Cell Death Dis 4:e609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Levine JM, Reynolds R, Fawcett JW (2001) The oligodendrocyte precursor cell in health and disease. Trends Neurosci 24:39–47

    Article  PubMed  CAS  Google Scholar 

  72. Li X, Han J, Zhao Y, Ding W, Wei J, Han S, Shang X, Wang B, Chen B, Xiao Z, Dai J (2015) Functionalized collagen scaffold neutralizing the myelin-inhibitory molecules promoted neurites outgrowth in vitro and facilitated spinal cord regeneration in vivo. ACS Appl Mater Interfaces 7(25):13960–13971

    Article  PubMed  CAS  Google Scholar 

  73. Li X, Zhao Y, Cheng S, Han S, Shu M, Chen B, Chen X, Tang F, Wang N, Tu Y, Wang B, Xiao Z, Zhang S, Dai J (2017) Cetuximab modified collagen scaffold directs neurogenesis of injury-activated endogenous neural stem cells for acute spinal cord injury repair. Biomaterials 137:73–86

    Article  PubMed  CAS  Google Scholar 

  74. Liu X, Li W, Fu X, Xu Y (2017) The immunogenicity and immune tolerance of pluripotent stem cell derivatives. Front Immunol 8:645

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lucin KM, Sanders VM, Jones TB, Malarkey WB, Popovich PG (2007) Impaired antibody synthesis after spinal cord injury is level dependent and is due to sympathetic nervous system dysregulation. Exp Neurol 207(1):75–84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Lujan E, Chanda S, Ahlenius H, Südhof TC, Wernig M (2012) Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc Natl Acad Sci U S A 109(7):2527–2532

    Article  PubMed  PubMed Central  Google Scholar 

  77. Mackay-Sim A, Kittel P (1991) Cell dynamics in the adult mouse olfactory epithelium: a quantitative autoradiographic study. J Neurosci Off J Soc Neurosci 11(4):979–984

    Article  CAS  Google Scholar 

  78. Mackay-Sim A, Féron F, Cochrane J et al (2008) Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain J Neurol 131:2376–2386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Maekawa M, Yamaguchi K, Nakamura T, Shibukawa R, Kodanaka I, Ichisaka T, Kawamura Y, Mochizuki H, Goshima N, Yamanaka S (2011) Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature 474(7350):225–229

    Article  PubMed  CAS  Google Scholar 

  80. März M, Schmidt R, Rastegar S, Strähle U (2011) Regenerative response following stab injury in the adult zebrafish telencephalon. Dev Dyn Off Publ Am Assoc Anatomists 240(9):2221–2231

    Google Scholar 

  81. Matyas JJ, Stewart AN, Goldsmith A, Nan Z, Skeel RL, Rossignol J, Dunbar GL (2017) Effects of bone-marrow-derived MSC transplantation on functional recovery in a rat model of spinal cord injury: comparisons of transplant locations and cell concentrations. Cell Transplant 26(8):1472–1482

    Article  PubMed  PubMed Central  Google Scholar 

  82. Maucksch C, Jones KS, Connor B (2013) Concise review: the involvement of SOX2 in direct reprogramming of induced neural stem/precursor cells. Stem Cells Transl Med 2(8):579–583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. McCulloch EA, Till JE (1960) The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice. Radiat Res 13:115–125

    Article  PubMed  CAS  Google Scholar 

  84. McKerracher L, Higuchi H (2006) Targeting Rho to stimulate repair after spinal cord injury. J Neurotrauma 23(3–4):309–317

    Article  PubMed  Google Scholar 

  85. Melo FR, Bressan RB, Forner S, Martini AC, Rode M, Delben PB, Rae GA, Figueiredo CP, Trentin AG (2017) Transplantation of human skin-derived mesenchymal stromal cells improves locomotor recovery after spinal cord injury in rats. Cell Mol Neurobiol 37(5):941–947

    Article  PubMed  CAS  Google Scholar 

  86. Morita T, Sasaki M, Kataoka-Sasaki Y, Nakazaki M, Nagahama H, Oka S, Oshigiri T, Takebayashi T, Yamashita T, Kocsis JD, Honmou O (2016) Intravenous infusion of mesenchymal stem cells promotes functional recovery in a model of chronic spinal cord injury. Neuroscience 335:221–231

    Article  PubMed  CAS  Google Scholar 

  87. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2007) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106

    Article  PubMed  CAS  Google Scholar 

  88. Namba T, Huttner WB (2017) Neural progenitor cells and their role in the development and evolutionary expansion of the neocortex. Wiley Interdiscip Rev Dev Biol 6(1):1–16

    Article  CAS  Google Scholar 

  89. Nashmi R, Fehlings MG (2001) Changes in axonal physiology and morphology after chronic compressive injury of the rat thoracic spinal cord. Neuroscience 104(1):235–251

    Article  PubMed  CAS  Google Scholar 

  90. Oliveri RS, Bello S, Biering-Sørensen F (2014) Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury: systematic review with meta-analyses of rat models. Neurobiol Dis 62:338–353

    Article  PubMed  CAS  Google Scholar 

  91. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V, Marro S, Südhof TC, Wernig M (2011) Induction of human neuronal cells by defined transcription factors. Nature 476(7359):220–223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Park I-H, Lerou PH, Zhao R, Huo H, Daley GQ (2008) Generation of human-induced pluripotent stem cells. Nat Protoc 3(7):1180–1186

    Article  PubMed  CAS  Google Scholar 

  93. Park H-W, Lim M-J, Jung H, Lee S-P, Paik K-S, Chang M-S (2010) Human mesenchymal stem cell-derived Schwann cell-like cells exhibit neurotrophic effects, via distinct growth factor production, in a model of spinal cord injury. Glia 58(9):1118–1132

    Article  PubMed  Google Scholar 

  94. Park WB, Kim SY, Lee SH, Kim H-W, Park J-S, Hyun JK (2010) The effect of mesenchymal stem cell transplantation on the recovery of bladder and hindlimb function after spinal cord contusion in rats. BMC Neurosci 11:119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Peng Z, Gao W, Yue B, Jiang J, Gu Y, Dai J, Chen L, Shi Q (2016) Promotion of neurological recovery in rat spinal cord injury by mesenchymal stem cells loaded on nerve-guided collagen scaffold through increasing alternatively activated macrophage polarization. J Tissue Eng Regen Med 12(3):e1725–e1736

    Article  CAS  Google Scholar 

  96. Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells (Dayton, Ohio) 25(11):2896–2902

    Article  Google Scholar 

  97. Plemel JR, Keough MB, Duncan GJ, Sparling JS, Yong VW, Stys PK, Tetzlaff W (2014) Remyelination after spinal cord injury: is it a target for repair? Prog Neurobiol 117:54–74

    Article  PubMed  CAS  Google Scholar 

  98. Priest CA, Manley NC, Denham J, Wirth ED, Lebkowski JS (2015) Preclinical safety of human embryonic stem cell-derived oligodendrocyte progenitors supporting clinical trials in spinal cord injury. Regen Med 10(8):939–958

    Article  PubMed  CAS  Google Scholar 

  99. Puri MC, Nagy A (2012) Concise review: embryonic stem cells versus induced pluripotent stem cells: the game is on. Stem Cells 30(1):10–14

    Article  PubMed  CAS  Google Scholar 

  100. Qu J, Zhang H (2017) Roles of mesenchymal stem cells in spinal cord injury. Stem Cells Int 2017:5251313

    PubMed  PubMed Central  Google Scholar 

  101. Rahimi-Movaghar V (2009) Clinical trials for the treatment of spinal cord injury: cervical and lumbar enlargements versus thoracic area. Brain J Neurol 132(Pt 7):e115

    Article  Google Scholar 

  102. Reimer MM, Sörensen I, Kuscha V, Frank RE, Liu C, Becker CG, Becker T (2008) Motor neuron regeneration in adult zebrafish. J Neurosci Off J Soc Neurosci 28(34):8510–8516

    Article  CAS  Google Scholar 

  103. Retzius G (1893) Die Cajal’schen Zellen der Grosshirnrinde beim Menschen und bei Säugetieren. Biologische Untersuchungen 5:1–9

    Google Scholar 

  104. Retzius G (1893) Studien uber Ependym and Neuroglia. Biologische Untersuchungen. 5:2–26

    Google Scholar 

  105. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science (New York, NY) 255(5052):1707–1710

    Article  CAS  Google Scholar 

  106. Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, Walker D, Zhang WR, Kreitzer AC, Huang Y (2012) Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11(1):100–109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Rockowitz S, Zheng D (2015) Significant expansion of the REST/NRSF cistrome in human versus mouse embryonic stem cells: potential implications for neural development. Nucleic Acids Res 43(12):5730–5743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Rockowitz S, Lien W-H, Pedrosa E, Wei G, Lin M, Zhao K, Lachman HM, Fuchs E, Zheng D (2014) Comparison of REST cistromes across human cell types reveals common and context-specific functions. PLoS Comput Biol 10(6):e1003671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Roet KCD, Verhaagen J (2014) Understanding the neural repair-promoting properties of olfactory ensheathing cells. Exp Neurol 261:594–609

    Article  PubMed  CAS  Google Scholar 

  110. Rosado IR, Carvalho PH, Alves EGL, Tagushi TM, Carvalho JL, Silva JF, Lavor MSL, Oliveira KM, Serakides R, Goes AM, Melo EG (2017) Immunomodulatory and neuroprotective effect of cryopreserved allogeneic mesenchymal stem cells on spinal cord injury in rats. Genet Mol Res 16(1):1–24

    Google Scholar 

  111. Ruddy RM, Morshead CM (2017) Home sweet home: the neural stem cell niche throughout development and after injury. Cell Tissue Res 371(1):125–141

    Article  PubMed  Google Scholar 

  112. Saberi H, Moshayedi P, Aghayan H-R, Arjmand B, Hosseini S-K, Emami-Razavi S-H, Rahimi-Movaghar V, Raza M, Firouzi M (2008) Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes. Neurosci Lett 443(1):46–50

    Article  PubMed  CAS  Google Scholar 

  113. Sandler VM, Lailler N, Bouhassira EE (2011) Reprogramming of embryonic human fibroblasts into fetal hematopoietic progenitors by fusion with human fetal liver CD34+ cells. PLoS One 6(4):e18265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Schmidt R, Strähle U, Scholpp S (2013) Neurogenesis in zebrafish – from embryo to adult. Neural Dev 8:3

    Article  PubMed  PubMed Central  Google Scholar 

  115. Scott CT, Magnus D (2014) Wrongful termination: lessons from the Geron clinical trial. Stem Cells Transl Med 3(12):1398–1401

    Article  PubMed  PubMed Central  Google Scholar 

  116. Seaberg RM, van der Kooy D (2003) Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci 26(3):125–131

    Article  PubMed  CAS  Google Scholar 

  117. Seo DK, Kim JH, Min J, Yoon HH, Shin E-S, Kim SW, Jeon SR (2017) Enhanced axonal regeneration by transplanted Wnt3a-secreting human mesenchymal stem cells in a rat model of spinal cord injury. Acta Neurochir 159(5):947–957

    Article  PubMed  Google Scholar 

  118. Shultz RB, Zhong Y (2017) Minocycline targets multiple secondary injury mechanisms in traumatic spinal cord injury. Neural Regen Res 12(5):702–713

    Article  PubMed  PubMed Central  Google Scholar 

  119. Siddiqui AM, Khazaei M, Fehlings MG (2015) Translating mechanisms of neuroprotection, regeneration, and repair to treatment of spinal cord injury. Prog Brain Res 218:15–54

    Article  PubMed  Google Scholar 

  120. Siminovitch L, Mcculloch EA, Till JE (1963) The distribution of colony-forming cells among spleen colonies. J Cell Comp Physiol 62:327–336

    Article  PubMed  CAS  Google Scholar 

  121. Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings MG (2014) Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol 6:309–331

    PubMed  PubMed Central  Google Scholar 

  122. Sordi V, Pellegrini S, Piemonti L (2017) Immunological issues after stem cell-based β cell replacement. Curr Diab Rep 9:17

    Google Scholar 

  123. Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R, Blelloch R (2011) Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol 29(5):443–448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Szabo E, Rampalli S, Risueño RM, Schnerch A, Mitchell R, Fiebig-Comyn A, Levadoux-Martin M, Bhatia M (2010) Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468(7323):521–526

    Article  PubMed  CAS  Google Scholar 

  125. Taapken SM, Nisler BS, Newton MA, Sampsell-Barron TL, Leonhard KA, McIntire EM, Montgomery KD (2011) Karyotypic abnormalities in human induced pluripotent stem cells and embryonic stem cells. Nat Biotechnol 29(4):313–314

    Article  PubMed  CAS  Google Scholar 

  126. Tabakow P, Jarmundowicz W, Czapiga B et al (2013) Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant 22:1591–1612

    Article  PubMed  Google Scholar 

  127. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  128. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  PubMed  CAS  Google Scholar 

  129. Tan EYM, Law JWS, Wang C-H, Lee AYW (2007) Development of a cell transducible RhoA inhibitor TAT-C3 transferase and its encapsulation in biocompatible microspheres to promote survival and enhance regeneration of severed neurons. Pharm Res 24(12):2297–2308

    Article  PubMed  CAS  Google Scholar 

  130. Temple S (1989) Division and differentiation of isolated CNS blast cells in microculture. Nature 340(6233):471–473

    Article  PubMed  CAS  Google Scholar 

  131. Tetzlaff W, Okon EB, Karimi-Abdolrezaee S, Hill CE, Sparling JS, Plemel JR, Plunet WT, Tsai EC, Baptiste D, Smithson LJ (2011) A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma 28(8):1611–1682

    Article  PubMed  PubMed Central  Google Scholar 

  132. Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222

    Article  PubMed  CAS  Google Scholar 

  133. Ulndreaj A, Tzekou A, Mothe AJ, Siddiqui AM, Dragas R, Tator CH, Torlakovic EE, Fehlings MG (2017) Characterization of the antibody response after cervical spinal cord injury. J Neurotrauma 34(6):1209–1226

    Article  PubMed  PubMed Central  Google Scholar 

  134. Vidane AS, Zomer HD, Oliveira BMM, Guimarães CF, Fernandes CB, Perecin F, Silva LA, Miglino MA, Meirelles FV, Ambrósio CE (2013) Reproductive stem cell differentiation: extracellular matrix, tissue microenvironment, and growth factors direct the mesenchymal stem cell lineage commitment. Reprod Sci (Thousand Oaks, CA) 20(10):1137–1143

    Article  CAS  Google Scholar 

  135. Vierbuchen T, Wernig M (2011) Direct lineage conversions: unnatural but useful? Nat Biotechnol 29(10):892–907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Wang P, Zhao D, Rockowitz S, Zheng D (2016) Divergence and rewiring of regulatory networks for neural development between human and other species. Neurogenesis (Austin, TX) 3(1):e1231495

    Article  CAS  Google Scholar 

  138. Warren L, Manos PD, Ahfeldt T, Loh Y-H, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Watanabe M, Toyama Y, Nishiyama A (2002) Differentiation of proliferated NG2-positive glial progenitor cells in a remyelinating lesion. J Neurosci Res 69:826–836

    Article  PubMed  CAS  Google Scholar 

  140. Wilcox JT, Satkunendrarajah K, Zuccato JA, Nassiri F, Fehlings MG (2014) Neural precursor cell transplantation enhances functional recovery and reduces astrogliosis in bilateral compressive/contusive cervical spinal cord injury. Stem Cells Transl Med 3(10):1148–1159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Winiecka-Klimek M, Smolarz M, Walczak MP, Zieba J, Hulas-Bigoszewska K, Kmieciak B, Piaskowski S, Rieske P, Grzela DP, Stoczynska-Fidelus E (2015) SOX2 and SOX2-MYC reprogramming process of fibroblasts to the neural stem cells compromised by senescence. PLoS One 10(11):e0141688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Winkler EA, Sengillo JD, Bell RD, Wang J, Zlokovic BV (2012) Blood-spinal cord barrier pericyte reductions contribute to increased capillary permeability. J Cereb Blood Flow Metab 32(10):1841–1852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung H-K, Nagy A (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458(7239):766–770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Xu Q, Wang J’A, He J, Zhou M, Adi J, Webster KA, Yu H (2011) Impaired CXCR4 expression and cell engraftment of bone marrow-derived cells from aged atherogenic mice. Atherosclerosis 219(1):92–99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Xu B, Zhao Y, Xiao Z, Wang B, Liang H, Li X, Fang Y, Han S, Li X, Fan C, Dai J (2017) A dual functional scaffold tethered with EGFR antibody promotes neural stem cell retention and neuronal differentiation for spinal cord injury repair. Adv Healthc Mater 6(9):1–12

    Google Scholar 

  146. Yamanaka S (2009) Elite and stochastic models for induced pluripotent stem cell generation. Nature 460(7251):49–52

    Article  PubMed  CAS  Google Scholar 

  147. Yang L (2011) From fibroblast cells to cardiomyocytes: direct lineage reprogramming. Stem Cell Res Ther 2(1):1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  PubMed  CAS  Google Scholar 

  149. Yu J, Hu K, Smuga-otto K et al (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324(5928):797–801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Zhao T, Zhang Z-N, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474(7350):212–215

    Article  PubMed  CAS  Google Scholar 

  151. Zhao Y, Xiao Z, Chen B, Dai J (2017) The neuronal differentiation microenvironment is essential for spinal cord injury repair. Organogenesis 13(3):63–70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hong, J., Rodgers, C.E., Fehlings, M.G. (2018). Stem Cell Applications in Spinal Cord Injury: A Primer. In: Delgado-Morales, R. (eds) Stem Cell Genetics for Biomedical Research. Springer, Cham. https://doi.org/10.1007/978-3-319-90695-9_4

Download citation

Publish with us

Policies and ethics