Skip to main content

Rett Syndrome and Stem Cell Research

  • Chapter
  • First Online:
Stem Cell Genetics for Biomedical Research
  • 757 Accesses

Abstract

Rett syndrome (RTT) is a devastating neurodevelopmental disorder resulting from mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MECP2). MECP2 mutations are also associated with other neurodevelopmental diseases, including autism and schizophrenia. Therefore, elucidating the mechanism of RTT can contribute to understanding the pathogenesis of a wide range of neurodevelopmental diseases. Despite its importance, however, the RTT pathogenesis remains unclear, and effective therapeutic treatment has not been developed. Offering an opportunity to move toward this goal, however, is the recent advance in the stem cell research field of the development of induced pluripotent stem cell (iPSC) technology. This technology can yield important insights into disease pathophysiology and has the potential to provide disease models for screening new drugs. Here, we discuss applications of recent stem cell technology to the field of research on RTT and describe the stem cell biology of RTT pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188

    Article  CAS  PubMed  Google Scholar 

  2. Ananiev G, Williams EC, Li H, Chang Q (2011) Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS One 6:e25255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Andoh-Noda T, Akamatsu W, Miyake K, Matsumoto T, Yamaguchi R, Sanosaka T et al (2015) Differentiation of multipotent neural stem cells derived from Rett syndrome patients is biased toward the astrocytic lineage. Mol Brain 8:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Armstrong D, Dunn JK, Antalffy B, Trivedi R (1995) Selective dendritic alterations in the cortex of Rett syndrome. J Neuropathol Exp Neurol 54:195–201

    Article  CAS  PubMed  Google Scholar 

  5. Baker SA, Chen L, Wilkins AD, Yu P, Lichtarge O, Zoghbi HY (2013) An AT-hook domain in MeCP2 determines the clinical course of Rett syndrome and related disorders. Cell 152:984–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bienvenu T, Chelly J (2006) Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized. Nat Rev Genet 7:415–426

    Article  CAS  PubMed  Google Scholar 

  7. Brero A, Easwaran HP, Nowak D, Grunewald I, Cremer T, Leonhardt H et al (2005) Methyl CpG-binding proteins induce large-scale chromatin reorganization during terminal differentiation. J Cell Biol 169:733–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J et al (2008) MeCP2, a key contributor to neurological disease activates and represses transcription. Science 320:1224–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chahrour M, Zoghbi HY (2007) The story of Rett syndrome: from clinic to neurobiology. Neuron 56:422–437

    Article  CAS  PubMed  Google Scholar 

  10. Chao HT, Chen H, Samaco RC, Xue M, Chahrour M, Yoo J et al (2010) Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468:263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen RZ, Akbarian S, Tudor M, Jaenisch R (2001) Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 27:327–331

    Article  CAS  PubMed  Google Scholar 

  12. Chen Y, Yu J, Niu Y, Qin D, Liu H, Li G et al (2017) Modeling Rett syndrome using TALEN-edited MECP2 mutant cynomolgus monkeys. Cell 169:945–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheng TL, Wang Z, Liao Q, Zhu Y, Zhou WH, Xu W et al (2014) MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex. Dev Cell 28:547–560

    Article  CAS  PubMed  Google Scholar 

  14. Cheung AY, Horvath LM, Grafodatskaya D, Pasceri P, Weksberg R, Hotta A et al (2011) Isolation of MECP2-null Rett syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum Mol Genet 20:2103–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Christodoulou J, Grimm A, Maher T, Bennetts B (2003) RettBASE: the IRSA MECP2 variation database-a new mutation database in evolution. Hum Mutat 21:466–472

    Article  CAS  PubMed  Google Scholar 

  17. Colantuoni C, Jeon OH, Hyder K, Chenchik A, Khimani AH, Narayanan V et al (2001) Gene expression profiling in postmortem Rett syndrome brain: differential gene expression and patient classification. Neurobiol Dis 8:847–865

    Article  CAS  PubMed  Google Scholar 

  18. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N et al (2013) Multiplex genome engineering using CRISPR-Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cronk JC, Derecki NC, Ji E, Xu Y, Lampano AE, Smirnov I et al (2015) Methyl-CpG binding protein 2 regulates microglia and macrophage gene expression in response to inflammatory stimuli. Immunity 42:679–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dragich JM, Kim YH, Arnold AP, Schanen NC (2007) Differential distribution of the MeCP2 splice variants in the postnatal mouse brain. J Comp Neurol 501:526–542

    Article  PubMed  Google Scholar 

  21. Dutta D, Heo I, Clevers H (2017) Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med 23:393–410

    Article  CAS  PubMed  Google Scholar 

  22. Ernst C (2016) Proliferation and differentiation deficits are a major convergence point for neurodevelopmental disorders. Trends Neurosci 39:290–299

    Article  CAS  PubMed  Google Scholar 

  23. Fukuda T, Itoh M, Ichikawa T, Washiyama K, Goto Y (2005) Delayed maturation of neuronal architecture and synaptogenesis in cerebral cortex of Mecp2-deficient mice. J Neuropathol Exp Neurol 64:537–544

    Article  CAS  PubMed  Google Scholar 

  24. Fyffe SL, Neul JL, Samaco RC, Chao HT, Ben-Shachar S, Moretti P et al (2008) Deletion of Mecp2 in Sim1-expressing neurons reveals a critical role for MeCP2 in feeding behavior, aggression, and the response to stress. Neuron 59:947–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gemelli T, Berton O, Nelson ED, Perrotti LI, Jaenisch R, Monteggia LM (2006) Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice. Biol Psychiatry 59:468–476

    Article  CAS  PubMed  Google Scholar 

  26. Giacometti E, Luikenhuis S, Beard C, Jaenisch R (2007) Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2. Proc Natl Acad Sci U S A 104:1931–1936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guy J, Hendrich B, Holmes M, Martin JE, Bird A (2001) A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 27:322–326

    Article  CAS  PubMed  Google Scholar 

  28. Harikrishnan KN, Chow MZ, Baker EK, Pal S, Bassal S, Brasacchio D et al (2005) Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing. Nat Genet 37:254–264

    Article  CAS  PubMed  Google Scholar 

  29. Heckman LD, Chahrour MH, Zoghbi HY (2014) Rett-causing mutations reveal two domains critical for MeCP2 function and for toxicity in MECP2 duplication syndrome mice. Elife 3:e02676

    Article  CAS  PubMed Central  Google Scholar 

  30. Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18:6538–6547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC et al (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27:851–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP et al (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29:731–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hotta A, Cheung AY, Farra N, Vijayaragavan K, Seguin CA, Draper JS et al (2009) Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nat Methods 6:370–376

    Article  CAS  PubMed  Google Scholar 

  34. Jellinger K, Armstrong D, Zoghbi HY, Percy AK (1988) Neuropathology of Rett syndrome. Acta Neuropathol 76:142–158

    Article  CAS  PubMed  Google Scholar 

  35. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  Google Scholar 

  36. Jo J, Xiao Y, Sun AX, Cukuroglu E, Tran HD, Goke J et al (2016) Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 19:248–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N et al (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19:187–191

    Article  CAS  PubMed  Google Scholar 

  38. Kerr B, Soto CJ, Saez M, Abrams A, Walz K, Young JI (2012) Transgenic complementation of MeCP2 deficiency: phenotypic rescue of Mecp2-null mice by isoform-specific transgenes. Eur J Hum Genet 20:69–76

    Article  CAS  PubMed  Google Scholar 

  39. Kim KY, Hysolli E, Park IH (2011) Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome. Proc Natl Acad Sci U S A 108:14169–14174

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kishi N, Macklis JD (2004) MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol Cell Neurosci 27:306–321

    Article  CAS  PubMed  Google Scholar 

  41. Kohyama J, Kojima T, Takatsuka E, Yamashita T, Namiki J, Hsieh J et al (2008) Epigenetic regulation of neural cell differentiation plasticity in the adult mammalian brain. Proc Natl Acad Sci U S A 105:18012–18017

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kriaucionis S, Bird A (2004) The major form of MeCP2 has a novel N-terminus generated by alternative splicing. Nucleic Acids Res 32:1818–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379

    Article  CAS  PubMed  Google Scholar 

  44. Li H, Zhong X, Chau KF, Santistevan NJ, Guo W, Kong G et al (2014) Cell cycle-linked MeCP2 phosphorylation modulates adult neurogenesis involving the Notch signalling pathway. Nat Commun 5:5601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li Y, Wang H, Muffat J, Cheng AW, Orlando DA, Loven J et al (2013) Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons. Cell Stem Cell 13:446–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lioy DT, Garg SK, Monaghan CE, Raber J, Foust KD, Kaspar BK et al (2011) A role for glia in the progression of Rett’s syndrome. Nature 475:497–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu H, Chen Y, Niu Y, Zhang K, Kang Y, Ge W et al (2014) TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell 14:323–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Luikenhuis S, Giacometti E, Beard CF, Jaenisch R (2004) Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proc Natl Acad Sci U S A 101:6033–6038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lyst MJ, Ekiert R, Ebert DH, Merusi C, Nowak J, Selfridge J et al (2013) Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat Neurosci 16:898–902

    Article  CAS  PubMed  Google Scholar 

  50. Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y et al (2010) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143:527–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, Tomasini L et al (2015) FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 162:375–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Maunakea AK, Chepelev I, Cui K, Zhao K (2013) Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res 23:1256–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mellen M, Ayata P, Dewell S, Kriaucionis S, Heintz N (2012) MeCP2 binds to 5hmC enriched in the nervous system. Cell 151:1417–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mellios N, Feldman DA, Sheridan SD, Ip JPK, Kwok S, Amoah SK et al (2018) MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling. Mol Psychiatry 23:1051-1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mnatzakanian GN, Lohi H, Munteanu I, Alfred SE, Yamada T, MacLeod PJ et al (2004) A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome. Nat Genet 36:339–341

    Article  CAS  PubMed  Google Scholar 

  56. Namihira M, Nakashima K (2013) Mechanisms of astrocytogenesis in the mammalian brain. Curr Opin Neurobiol 23:921–927

    Article  CAS  PubMed  Google Scholar 

  57. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389

    Article  CAS  PubMed  Google Scholar 

  58. Neul JL, Fang P, Barrish J, Lane J, Caeg EB, Smith EO et al (2008) Specific mutations in methyl-CpG-binding protein 2 confer different severity in Rett syndrome. Neurology 70:1313–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Okabe Y, Kusaga A, Takahashi T, Mitsumasu C, Murai Y, Tanaka E et al (2010) Neural development of methyl-CpG-binding protein 2 null embryonic stem cells: a system for studying Rett syndrome. Brain Res 1360:17–27

    Article  CAS  PubMed  Google Scholar 

  60. Okabe Y, Takahashi T, Mitsumasu C, Kosai K, Tanaka E, Matsuishi T (2012) Alterations of gene expression and glutamate clearance in astrocytes derived from an MeCP2-null mouse model of Rett syndrome. PLoS One 7:e35354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pan H, Li MR, Nelson P, Bao XH, Wu XR, Yu S (2006) Large deletions of the MECP2 gene in Chinese patients with classical Rett syndrome. Clin Genet 70:418–419

    Article  CAS  PubMed  Google Scholar 

  62. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR et al (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10:973–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ravn K, Nielsen JB, Skjeldal OH, Kerr A, Hulten M, Schwartz M (2005) Large genomic rearrangements in MECP2. Hum Mutat 25:324

    Article  PubMed  Google Scholar 

  64. Reiss AL, Faruque F, Naidu S, Abrams M, Beaty T, Bryan RN et al (1993) Neuroanatomy of Rett syndrome: a volumetric imaging study. Ann Neurol 34:227–234

    Article  CAS  PubMed  Google Scholar 

  65. Rett A (1966) On a unusual brain atrophy syndrome in hyperammonemia in childhood. Wien Med Wochenschr 116:723–726

    PubMed  CAS  Google Scholar 

  66. Ricciardi S, Boggio EM, Grosso S, Lonetti G, Forlani G, Stefanelli G et al (2011) Reduced AKT/mTOR signaling and protein synthesis dysregulation in a Rett syndrome animal model. Hum Mol Genet 20:1182–1196

    Article  CAS  PubMed  Google Scholar 

  67. Sanjana NE, Cong L, Zhou Y, Cunniff MM, Feng G, Zhang F (2012) A transcription activator-like effector toolbox for genome engineering. Nat Protoc 7:171–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Setoguchi H, Namihira M, Kohyama J, Asano H, Sanosaka T, Nakashima K (2006) Methyl-CpG binding proteins are involved in restricting differentiation plasticity in neurons. J Neurosci Res 84:969–979

    Article  CAS  PubMed  Google Scholar 

  69. Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY (2002) Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet 11:115–124

    Article  CAS  PubMed  Google Scholar 

  70. Singh J, Saxena A, Christodoulou J, Ravine D (2008) MECP2 genomic structure and function: insight from ENCODE. Nucleic Acids Res 36:6035–6047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Skene PJ, Illingworth RS, Webb S, Kerr AR, James KD, Turner DJ et al (2010) Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell 37:457–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Svendsen CN, ter Borg MG, Armstrong RJ, Rosser AE, Chandran S, Ostenfeld T et al (1998) A new method for the rapid and long term growth of human neural precursor cells. J Neurosci Methods 85:141–152

    Article  CAS  PubMed  Google Scholar 

  73. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  Google Scholar 

  74. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  Google Scholar 

  75. Tillotson R, Selfridge J, Koerner MV, Gadalla KKE, Guy J, De Sousa D et al (2017) Radically truncated MeCP2 rescues Rett syndrome-like neurological defects. Nature 550:398–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Trappe R, Laccone F, Cobilanschi J, Meins M, Huppke P, Hanefeld F et al (2001) MECP2 mutations in sporadic cases of Rett syndrome are almost exclusively of paternal origin. Am J Hum Genet 68:1093–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tsujimura K, Abematsu M, Kohyama J, Namihira M, Nakashima K (2009) Neuronal differentiation of neural precursor cells is promoted by the methyl-CpG-binding protein MeCP2. Exp Neurol 219:104–111

    Article  CAS  PubMed  Google Scholar 

  78. Tsujimura K, Irie K, Nakashima H, Egashira Y, Fukao Y, Fujiwara M et al (2015) miR-199a links MeCP2 with mTOR signaling and its dysregulation leads to Rett syndrome phenotypes. Cell Rep 12:1887–1901

    Article  CAS  Google Scholar 

  79. Veeraragavan S, Wan YW, Connolly DR, Hamilton SM, Ward CS, Soriano S et al (2016) Loss of MeCP2 in the rat models regression, impaired sociability and transcriptional deficits of Rett syndrome. Hum Mol Genet 25:3284–3302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wan M, Lee SS, Zhang X, Houwink-Manville I, Song HR, Amir RE et al (1999) Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am J Hum Genet 65:1520–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Young JI, Hong EP, Castle JC, Crespo-Barreto J, Bowman AB, Rose MF et al (2005) Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc Natl Acad Sci U S A 102:17551–17558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  Google Scholar 

  83. Zhang W, Peterson M, Beyer B, Frankel WN, Zhang ZW (2014) Loss of MeCP2 from forebrain excitatory neurons leads to cortical hyperexcitation and seizures. J Neurosci 34:2754–2763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zou J, Maeder ML, Mali P, Pruett-Miller SM, Thibodeau-Beganny S, Chou BK et al (2009) Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5:97–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was in part supported by JSPS KAKENHI Grant Number 16 K18391 to K.T. and MEXT KAKENHI Grant Number 17H01390 to K.N., Foundation of Synapse and Neurocircuit Pathology, and Intramural Research Grant 27-7 for Neurological and Psychiatric Disorders of the National Center of Neurology and Psychiatry. We thank Elizabeth Nakajima for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keita Tsujimura or Kinichi Nakashima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsujimura, K., Nakashima, K. (2018). Rett Syndrome and Stem Cell Research. In: Delgado-Morales, R. (eds) Stem Cell Genetics for Biomedical Research. Springer, Cham. https://doi.org/10.1007/978-3-319-90695-9_3

Download citation

Publish with us

Policies and ethics