Skip to main content

Genomic Features: Content Sensors, Nucleotide Skew Plot, Strand Asymmetry, and DNA Methylation

  • Chapter
  • First Online:
Bioinformatics and the Cell
  • 2472 Accesses

Abstract

This chapter introduces tools to characterize genomic features and illustrates how a phylogenetic perspective can fundamentally alter one’s conclusion on genomic evolution. The chapter starts by explaining content sensors (e.g., nucleotide, dinucleotide, triplet frequencies, etc.) in contrast to signal sensors (e.g., 5’ and 3’ splice sites, branchpoint sites, SD sequences, anti-SD sequences, Kozak consensus in mammalian mRNAs, sense and stop codons, etc.). Frequently used indices for characterizing genomic content sensors include various word skews, with the simplest being GC skew often used to identify the origin of DNA replication in prokayrotes. Single-origin replication in most bacterial genomes results in strong mutation bias between leading and lagging strands which can be graphically revealed by various skew plots. Confounding these strand biases is the genomic modification by DNA methylation which can have profound effect on genome evolution. Association between CpG deficiency and CpG-specific DNA methylation was challenged previously with two mycoplasma genomes but is restored by a phylogeny-based reanalysis and re-interpretation of the genomic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hameed EA, Ji H, Shata MT (2016) HIV-induced epigenetic alterations in host cells. Adv Exp Med Biol 879:27–38

    Article  CAS  PubMed  Google Scholar 

  • Arbibe L, Sansonetti PJ (2007) Epigenetic regulation of host response to LPS: causing tolerance while avoiding toll errancy. Cell Host Microbe 1(4):244–246

    Article  CAS  PubMed  Google Scholar 

  • Bao J, Bedford MT (2016) Epigenetic regulation of the histone-to-protamine transition during spermiogenesis. Reproduction 151(5):R55–R70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bestor TH, Coxon A (1993) The pros and cons of DNA methylation. Curr Biol 6:384–386

    Article  Google Scholar 

  • Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, Delano D, Zhang L, Schroth GP, Gunderson KL et al (2011) High density DNA methylation array with single CpG site resolution. Genomics 98(4):288–295

    Article  CAS  PubMed  Google Scholar 

  • Bierne H, Hamon M, Cossart P (2012) Epigenetics and bacterial infections. Cold Spring Harb Perspect Med 2(12):a010272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bigaud E, Corrales FJ (2016) Methylthioadenosine (MTA) regulates liver cells proteome and methylproteome: implications in liver biology and disease. Mol Cell Proteomics 15(5):1498–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146):799–816

    Article  CAS  PubMed  Google Scholar 

  • Bogenhagen DF, Clayton DA (2003) The mitochondrial DNA replication bubble has not burst. Trends Biochem Sci 28(7):357–360

    Article  CAS  PubMed  Google Scholar 

  • Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5(9):769–784

    Article  CAS  PubMed  Google Scholar 

  • Brauch H, Weirich G, Brieger J, Glavac D, Rodl H, Eichinger M, Feurer M, Weidt E, Puranakanitstha C, Neuhaus C et al (2000) VHL alterations in human clear cell renal cell carcinoma: association with advanced tumor stage and a novel hot spot mutation. Cancer Res 60(7):1942–1948

    PubMed  CAS  Google Scholar 

  • Brown TA, Cecconi C, Tkachuk AN, Bustamante C, Clayton DA (2005) Replication of mitochondrial DNA occurs by strand displacement with alternative light-strand origins, not via a strand-coupled mechanism. Genes Dev 19(20):2466–2476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardon LR, Burge C, Clayton DA, Karlin S (1994) Pervasive CpG suppression in animal mitochondrial genomes. Proc Natl Acad Sci USA 91:3799–3803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambaud I, Heilig R, Ferris S, Barbe V, Samson D, Galisson F, Moszer I, Dybvig K, Wroblewski H, Viari A et al (2001) The complete genome sequence of the murine respiratory pathogen Mycoplasma pulmonis. Nucleic Acids Res 29(10):2145–2153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, Feng GH, Peng H, Zhang X, Qian J et al (2016) Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351(6271):397–400

    Article  CAS  PubMed  Google Scholar 

  • Chu C, Qu K, Zhong FL, Artandi SE, Chang HY (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44(4):667–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu C, Quinn J, Chang HY (2012) Chromatin isolation by RNA purification (ChIRP). J Vis Exp 61:e3912

    Google Scholar 

  • Clark AT (2015) DNA methylation remodeling in vitro and in vivo. Curr Opin Genet Dev 34:82–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clayton DA (1982) Replication of animal mitochondrial DNA. Cell 28(4):693–705

    Article  CAS  PubMed  Google Scholar 

  • Clayton DA (2000) Transcription and replication of mitochondrial DNA. Hum Reprod 15(Suppl 2):11–17

    Article  PubMed  Google Scholar 

  • Deng W, Lee J, Wang H, Miller J, Reik A, Gregory PD, Dean A, Blobel GA (2012) Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149(6):1233–1244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng W, Rupon JW, Krivega I, Breda L, Motta I, Jahn KS, Reik A, Gregory PD, Rivella S, Dean A et al (2014b) Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 158(4):849–860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton J, Cox TV, Davies R, Down TA et al (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38(12):1378–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatemi M, Hermann A, Pradhan S, Jeltsch A (2001) The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to methylated DNA. J Mol Biol 309(5):1189–1199

    Article  CAS  PubMed  Google Scholar 

  • Fisher RA (1926) The arrangement of field experiments. J Minist Agric 33:503–513

    Google Scholar 

  • Forrester WC, Epner E, Driscoll MC, Enver T, Brice M, Papayannopoulou T, Groudine M (1990) A deletion of the human beta-globin locus activation region causes a major alteration in chromatin structure and replication across the entire beta-globin locus. Genes Dev 4(10):1637–1649

    Article  CAS  PubMed  Google Scholar 

  • Frederico LA, Kunkel TA, Shaw BR (1990) A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry (Mosc) 29(10):2532–2537

    Article  CAS  Google Scholar 

  • Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, Farinelli L, Miska E, Mansuy IM (2014) Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 17(5):667–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto M, Washio T, Tomita M (2000) Causal analysis of CpG suppression in the Mycoplasma genome. Microb Comp Genomics 5(1):51–58

    Article  CAS  PubMed  Google Scholar 

  • Grigg GW (1996) Sequencing 5-methylcytosine residues by the bisulphite method. DNA Seq 6(4):189–198

    Article  CAS  PubMed  Google Scholar 

  • Grigg G, Clark S (1994) Sequencing 5-methylcytosine residues in genomic DNA. BioEssays 16(6):431–436

    Article  CAS  PubMed  Google Scholar 

  • Hou C, Zhao H, Tanimoto K, Dean A (2008) CTCF-dependent enhancer-blocking by alternative chromatin loop formation. Proc Natl Acad Sci U S A 105(51):20398–20403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ingrosso D, Perna AF (2009) Epigenetics in hyperhomocysteinemic states. A special focus on uremia. Biochim Biophys Acta 1790(9):892–899

    Article  CAS  PubMed  Google Scholar 

  • Ingrosso D, Cimmino A, Perna AF, Masella L, De Santo NG, De Bonis ML, Vacca M, D’Esposito M, D’Urso M, Galletti P et al (2003) Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia. Lancet 361(9370):1693–1699

    Article  CAS  PubMed  Google Scholar 

  • Insinga A, Minucci S, Pelicci PG (2005a) Mechanisms of selective anticancer action of histone deacetylase inhibitors. Cell Cycle 4(6):741–743

    Article  CAS  PubMed  Google Scholar 

  • Insinga A, Monestiroli S, Ronzoni S, Gelmetti V, Marchesi F, Viale A, Altucci L, Nervi C, Minucci S, Pelicci PG (2005b) Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 11(1):71–76

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Bulger M, Pazin MJ, Kobayashi R, Kadonaga JT (1997) ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90(1):145–155

    Article  CAS  PubMed  Google Scholar 

  • Jin P, Alisch RS, Warren ST (2004a) RNA and microRNAs in fragile X mental retardation. Nat Cell Biol 6(11):1048–1053

    Article  CAS  PubMed  Google Scholar 

  • Josse J, Kaiser AD, Kornberg A (1961) Enzymatic synthesis of deoxyribonucleic acid VII. Frequencies of nearest neighbor base-sequences in deoxyribonucleic acid. J Biol Chem 236:864–875

    PubMed  CAS  Google Scholar 

  • Kanehisa M (2013) Molecular network analysis of diseases and drugs in KEGG. Methods Mol Biol 939:263–275

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44(D1):D457–D462

    Article  CAS  PubMed  Google Scholar 

  • Karlin S, Burge C (1995) Dinucleotide relative abundance extremes: a genomic signature. TIG 11(7):283–290

    Article  CAS  PubMed  Google Scholar 

  • Karlin S, Mrazek J (1996) What drives codon choices in human genes. J Mol Biol 262:459–472

    Article  CAS  PubMed  Google Scholar 

  • Kioussis D, Vanin E, deLange T, Flavell RA, Grosveld FG (1983) Beta-globin gene inactivation by DNA translocation in gamma beta-thalassaemia. Nature 306(5944):662–666

    Article  CAS  PubMed  Google Scholar 

  • Korenke GC, Fuchs S, Krasemann E, Doerr HG, Wilichowski E, Hunneman DH, Hanefeld F (1996) Cerebral adrenoleukodystrophy (ALD) in only one of monozygotic twins with an identical ALD genotype. Ann Neurol 40(2):254–257

    Article  CAS  PubMed  Google Scholar 

  • Krasemann EW, Meier V, Korenke GC, Hunneman DH, Hanefeld F (1996) Identification of mutations in the ALD-gene of 20 families with adrenoleukodystrophy/adrenomyeloneuropathy. Hum Genet 97(2):194–197

    Article  PubMed  CAS  Google Scholar 

  • Kungulovski G, Jeltsch A (2016) Epigenome editing: state of the art, concepts, and perspectives. Trends Genet 32(2):101–113

    Article  CAS  PubMed  Google Scholar 

  • Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  CAS  PubMed  Google Scholar 

  • Lobry JR (1996) Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol 13(5):660–665

    Article  CAS  PubMed  Google Scholar 

  • Lopez P, Philippe H, Myllykallio H, Forterre P (1999) Identification of putative chromosomal origins of replication in Archaea. Mol Microbiol 32(4):883–886

    Article  CAS  PubMed  Google Scholar 

  • Ma P, Xia X (2011) Factors affecting splicing strength of yeast genes. Comp Funct Genomics:Article ID 212146, 13 pages

    Google Scholar 

  • Marin A, Xia X (2008) GC skew in protein-coding genes between the leading and lagging strands in bacterial genomes: new substitution models incorporating strand bias. J Theor Biol 253(3):508–513

    Article  CAS  PubMed  Google Scholar 

  • Morita M, Shimozawa N, Kashiwayama Y, Suzuki Y, Imanaka T (2011) ABC subfamily D proteins and very long chain fatty acid metabolism as novel targets in adrenoleukodystrophy. Curr Drug Targets 12(5):694–706

    Article  CAS  PubMed  Google Scholar 

  • Muller HJ, Altenburg E (1930) The frequency of translocations produced by X-rays in Drosophila. Genetics 15(4):283–311

    PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy J, Mahony J, Ainsworth S, Nauta A, van Sinderen D (2013) Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. Appl Environ Microbiol 79(24):7547–7555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nur I, Szyf M, Razin A, Glaser G, Rottem S, Razin S (1985) Procaryotic and eucaryotic traits of DNA methylation in spiroplasmas (mycoplasmas). J Bacteriol 164(1):19–24

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nussinov R (1984) Doublet frequencies in evolutionary distinct groups. Nucleic Acids Res 12(3):1749–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta T, Gray TA, Rogan PK, Buiting K, Gabriel JM, Saitoh S, Muralidhar B, Bilienska B, Krajewska-Walasek M, Driscoll DJ et al (1999) Imprinting-mutation mechanisms in Prader-Willi syndrome. Am J Hum Genet 64(2):397–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32(2):232–246

    Article  CAS  PubMed  Google Scholar 

  • Pazin MJ, Kamakaka RT, Kadonaga JT (1994) ATP-dependent nucleosome reconfiguration and transcriptional activation from preassembled chromatin templates. Science 266(5193):2007–2011

    Article  CAS  PubMed  Google Scholar 

  • Pazin MJ, Sheridan PL, Cannon K, Cao Z, Keck JG, Kadonaga JT, Jones KA (1996) NF-kappa B-mediated chromatin reconfiguration and transcriptional activation of the HIV-1 enhancer in vitro. Genes Dev 10(1):37–49

    Article  CAS  PubMed  Google Scholar 

  • Pazin MJ, Hermann JW, Kadonaga JT (1998) Promoter structure and transcriptional activation with chromatin templates assembled in vitro. A single Gal4-VP16 dimer binds to chromatin or to DNA with comparable affinity. J Biol Chem 273(51):34653–34660

    Article  CAS  PubMed  Google Scholar 

  • Petronis A (2004) The origin of schizophrenia: genetic thesis, epigenetic antithesis, and resolving synthesis. Biol Psychiatry 55(10):965–970

    Article  CAS  PubMed  Google Scholar 

  • Petronis A (2006) Epigenetics and twins: three variations on the theme. Trends Genet 22(7):347–350

    Article  CAS  PubMed  Google Scholar 

  • Petronis A, Gottesman II, Kan P, Kennedy JL, Basile VS, Paterson AD, Popendikyte V (2003) Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr Bull 29(1):169–178

    Article  PubMed  Google Scholar 

  • Razin A, Razin S (1980) Methylated bases in mycoplasmal DNA. Nucleic Acids Res 8(6):1383–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rideout WMI, Coetzee GA, Olumi AF, Jones PA (1990) 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science 249:1288–1290

    Article  CAS  PubMed  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen G, Bernier B, Varhol R, Delaney A et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4(8):651–657

    Article  CAS  PubMed  Google Scholar 

  • Rodgers AB, Morgan CP, Leu NA, Bale TL (2015) Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci U S A 112(44):13699–13704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sancar A, Sancar GB (1988) DNA repair enzymes. Annu Rev Biochem 57:29–67

    Article  CAS  PubMed  Google Scholar 

  • Segurel L, Bon C (2017) On the evolution of lactase persistence in humans. Annu Rev Genomics Hum Genet 18:297–319

    Article  PubMed  CAS  Google Scholar 

  • Sendler E, Johnson GD, Mao S, Goodrich RJ, Diamond MP, Hauser R, Krawetz SA (2013) Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res 41(7):4104–4117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shadel GS, Clayton DA (1997) Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66:409–435

    Article  CAS  PubMed  Google Scholar 

  • Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, Belleannee C, Kucukural A, Serra RW, Sun F et al (2016) Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351(6271):391–396

    Article  CAS  PubMed  Google Scholar 

  • Sheridan PL, Sheline CT, Cannon K, Voz ML, Pazin MJ, Kadonaga JT, Jones KA (1995) Activation of the HIV-1 enhancer by the LEF-1 HMG protein on nucleosome-assembled DNA in vitro. Genes Dev 9(17):2090–2104

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker R, Deng J, Wang W, Zhang K (2010) Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Res 20(7):883–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sved J, Bird A (1990) The expected equilibrium of the CpG dinucleotide in vertebrate genomes under a mutation model. Proc Natl Acad Sci U S A 87:4692–4696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanabe M, Kanehisa M (2012) Using the KEGG database resource. Curr Protoc Bioinformatics Chapter 1:Unit1 12

    Google Scholar 

  • Tanaka M, Ozawa T (1994) Strand asymmetry in human mitochondrial DNA mutations. Genomics 22(2):327–335

    Article  CAS  PubMed  Google Scholar 

  • Taramelli R, Kioussis D, Vanin E, Bartram K, Groffen J, Hurst J, Grosveld FG (1986) Gamma delta beta-thalassaemias 1 and 2 are the result of a 100 kbp deletion in the human beta-globin cluster. Nucleic Acids Res 14(17):7017–7029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tomatsu S, Orii KO, Bi Y, Gutierrez MA, Nishioka T, Yamaguchi S, Kondo N, Orii T, Noguchi A, Sly WS (2004) General implications for CpG hot spot mutations: methylation patterns of the human iduronate-2-sulfatase gene locus. Hum Mutat 23(6):590–598

    Article  CAS  PubMed  Google Scholar 

  • Vlasschaert C, Xia X, Gray DA (2016) Selection preserves Ubiquitin Specific Protease 4 alternative exon skipping in therian mammals. Sci Rep 6:20039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voelter-Mahlknecht S (2016) Epigenetic associations in relation to cardiovascular prevention and therapeutics. Clin Epigenetics 8:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wade PA, Wolffe AP (2001) ReCoGnizing methylated DNA. Nat Struct Biol 8(7):575–577

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Xia X (2017) The role of +4U as an extended translation termination signal in bacteria. Genetics 205(2):539–549

    Article  CAS  PubMed  Google Scholar 

  • Xia X (1998b) The rate heterogeneity of nonsynonymous substitutions in mammalian mitochondrial genes. Mol Biol Evol 15:336–344

    Article  CAS  PubMed  Google Scholar 

  • Xia X (2003) DNA methylation and mycoplasma genomes. J Mol Evol 57:S21–S28

    Article  CAS  PubMed  Google Scholar 

  • Xia X (2012a) DNA replication and strand asymmetry in prokaryotic and mitochondrial genomes. Curr Genomics 13(1):16–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia X (2013) DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 30:1720–1728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia X (2017b) Bioinformatics and drug discovery. Curr Top Med Chem 17(15):1709–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia X (2017d) Self-organizing map for characterizing heterogeneous nucleotide and amino acid sequence motifs. Computation 5(4):43

    Article  Google Scholar 

  • Xia X, Li WH (1998) What amino acid properties affect protein evolution? J Mol Evol 47(5):557–564

    Article  CAS  PubMed  Google Scholar 

  • Xia X, Hafner MS, Sudman PD (1996) On transition bias in mitochondrial genes of pocket gophers. J Mol Evol 43:32–40

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Postscript

Postscript

“No aphorism is more frequently repeated in connection with field trials, than that we must ask Nature few questions, or ideally, one question at a time. The writer is convinced that this view is wholly mistaken. Nature, he suggests, will respond to a logical and carefully thought-out questionnaire; indeed, if we ask her a single question, she will often refuse to answer until some other topic has been discussed” (Fisher 1926).

Researchers have attacked the methylation hypothesis of CpG deficiency without a phylogeny perspective. Nature gave them a wrong answer and landed them in an undesirable position.

Here comes another story for illustrating the value of thinking broadly. I have previously told a fable of Afandi in which the ancient Islamic sage rode his little donkey around the country teaching people to be wise. The king, craving to be recognized as the wisest, had always been wracking his brain for plots to ambush Afandi intellectually. One day he received the happy news that Afandi had recently suffered from double vision and jumped into action immediately by inviting Afandi to the palace to meet him and his courtiers. Upon Afandi’s arrival, the king greeted him, “Congratulation Afandi! I heard that you have just doubled your fortune. Isn’t it true that, through your wise and penetrating eyes, you now see two wives and two houses of your own? Even the little donkey behind you has now doubled itself in your eyes, isn’t? What a smart way of doubling one’s fortune!” Afandi, realizing that the king was making fun of his double vision, was not pleased, but he replied calmly, among the jeering laughters of the courtiers, “Truly, Your Majesty. At this moment, my eyes are misleading me to think that Your Majesty has four legs.”

Just as researchers attacking the methylation hypothesis landed themselves in an undesirable position, so was the king attacking Afandi. Following Fisher’s sagely advice of thinking broadly may keep us safe from making the same mistake.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xia, X. (2018). Genomic Features: Content Sensors, Nucleotide Skew Plot, Strand Asymmetry, and DNA Methylation. In: Bioinformatics and the Cell. Springer, Cham. https://doi.org/10.1007/978-3-319-90684-3_11

Download citation

Publish with us

Policies and ethics