Skip to main content

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 1080 Accesses

Abstract

The concept of geometric algebra (GA) arises out of the desire to multiply vectors with the usual rules of multiplying numbers, including the usual rules for taking inverses. From that point of view, the construction of GA is an instance of a powerful mechanism used in mathematics that may be described as creating virtue out of necessity. In general, this mechanism comes to the rescue when the need arises to extend a given structure in order to include desirable features that are not present in that structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Artin, Geometric Algebra. Tracts in Pure and Applied Mathematics, vol. 3 (Interscience, New York, 1957)

    Google Scholar 

  2. W.K. Clifford, Applications of Grassmann’s extensive algebra, in Proceedings of the London Mathematical Society (1878)

    Article  MathSciNet  Google Scholar 

  3. P.A.M. Dirac, The quantum theory of the electron, I, II. Proc. R. Soc. Lond. A117, 610–624; A118, 351–361 (1928)

    Google Scholar 

  4. H.G. Grassmann, Die lineale Ausdehnungslehre, ein neuer Zweig der Mathematik (Otto Wiegand, Leipzig, 1844)

    Google Scholar 

  5. H.G. Grassmann, Extension Theory (American Mathematical Society, Providence, 2000). Traslated from the German version Die Ausdehnungslehre von 1862 by Lloys C. Kannenberg

    Google Scholar 

  6. P. Lounesto, Clifford Algebras and Spinors, 2nd edn. LMS Lecture Note Series, vol. 286 (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  7. W. Pauli, Zur Quantenmechanik des magnetischen Elektrons. Z. Phys. 42, 601–623 (1927)

    Article  Google Scholar 

  8. M. Riesz, Clifford Numbers and Spinors. Fundamental Theories of Physics, vol. 54 (Kluwer Academic, New York, 1997). An edition by E. F. Bolinder and P. Lounesto of the memoir Clifford Numbers and Spinors by M. Riesz, Lecture Series No. 38, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, 1958. Includes an annex by Bolinder and an article by Lounesto of Riesz’ work

    Google Scholar 

  9. O. Rodrigues, Des lois géométriques qui régissent les déplacements d’un système solide dans l’espace, et de la variation des coordonées provenant de ses déplacements considérés indépendamment des causes qui peuvent les produire. Journal des Mathématiques Pures et Appliquées 5, 380–440 (1840)

    Google Scholar 

  10. J. Vaz Jr., R. da Rocha Jr., An Introduction to Clifford Algebras and Spinors (Oxford University Press, Oxford, 2016)

    Book  Google Scholar 

  11. S. Xambó-Descamps, Real Spinorial Groups—A Short Mathematical Introduction. SBMAC/ Springerbrief (Springer, New York, 2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lavor, C., Xambó-Descamps, S., Zaplana, I. (2018). Low Dimensional Geometric Algebras. In: A Geometric Algebra Invitation to Space-Time Physics, Robotics and Molecular Geometry. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-90665-2_1

Download citation

Publish with us

Policies and ethics