Low Dimensional Geometric Algebras

  • Carlile Lavor
  • Sebastià Xambó-Descamps
  • Isiah Zaplana
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)


The concept of geometric algebra (GA) arises out of the desire to multiply vectors with the usual rules of multiplying numbers, including the usual rules for taking inverses. From that point of view, the construction of GA is an instance of a powerful mechanism used in mathematics that may be described as creating virtue out of necessity. In general, this mechanism comes to the rescue when the need arises to extend a given structure in order to include desirable features that are not present in that structure.


  1. 4.
    E. Artin, Geometric Algebra. Tracts in Pure and Applied Mathematics, vol. 3 (Interscience, New York, 1957)Google Scholar
  2. 19.
    W.K. Clifford, Applications of Grassmann’s extensive algebra, in Proceedings of the London Mathematical Society (1878)MathSciNetCrossRefGoogle Scholar
  3. 27.
    P.A.M. Dirac, The quantum theory of the electron, I, II. Proc. R. Soc. Lond. A117, 610–624; A118, 351–361 (1928)Google Scholar
  4. 37.
    H.G. Grassmann, Die lineale Ausdehnungslehre, ein neuer Zweig der Mathematik (Otto Wiegand, Leipzig, 1844)Google Scholar
  5. 39.
    H.G. Grassmann, Extension Theory (American Mathematical Society, Providence, 2000). Traslated from the German version Die Ausdehnungslehre von 1862 by Lloys C. KannenbergGoogle Scholar
  6. 72.
    P. Lounesto, Clifford Algebras and Spinors, 2nd edn. LMS Lecture Note Series, vol. 286 (Cambridge University Press, Cambridge, 2001)Google Scholar
  7. 78.
    W. Pauli, Zur Quantenmechanik des magnetischen Elektrons. Z. Phys. 42, 601–623 (1927)CrossRefGoogle Scholar
  8. 82.
    M. Riesz, Clifford Numbers and Spinors. Fundamental Theories of Physics, vol. 54 (Kluwer Academic, New York, 1997). An edition by E. F. Bolinder and P. Lounesto of the memoir Clifford Numbers and Spinors by M. Riesz, Lecture Series No. 38, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, 1958. Includes an annex by Bolinder and an article by Lounesto of Riesz’ workGoogle Scholar
  9. 83.
    O. Rodrigues, Des lois géométriques qui régissent les déplacements d’un système solide dans l’espace, et de la variation des coordonées provenant de ses déplacements considérés indépendamment des causes qui peuvent les produire. Journal des Mathématiques Pures et Appliquées 5, 380–440 (1840)Google Scholar
  10. 92.
    J. Vaz Jr., R. da Rocha Jr., An Introduction to Clifford Algebras and Spinors (Oxford University Press, Oxford, 2016)CrossRefGoogle Scholar
  11. 97.
    S. Xambó-Descamps, Real Spinorial Groups—A Short Mathematical Introduction. SBMAC/ Springerbrief (Springer, New York, 2018).Google Scholar

Copyright information

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Carlile Lavor
    • 1
  • Sebastià Xambó-Descamps
    • 2
  • Isiah Zaplana
    • 3
  1. 1.Department of Applied Maths (IMECC-UNICAMP)University of CampinasCampinasBrazil
  2. 2.Departament de MatemàtiquesUniversitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.Institut d’Org. i Control de Sist. Ind.Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations