Skip to main content

Plant Genetic Transformation and Transgenic Crops: Methods and Applications

  • Chapter
  • First Online:

Abstract

The combined use of recombinant DNA technology, gene transfer methods, and tissue culture techniques has led to the efficient transformation and production of transgenics in a wide variety of crop plants. In fact, transgenesis has emerged as an additional tool to carry out single-gene breeding or transgenic breeding of crops. Unlike conventional breeding, only the cloned gene(s) of agronomic importance is/are being introduced without cotransfer of undesirable genes from the donor. The recipient genotype is least disturbed, which eliminates the need for repeated backcrosses. Above all, the transformation methods provide access to a large gene pool, as the gene(s) may come from viruses, bacteria, fungi, insects, animals, human beings, unrelated plants, and even from chemical synthesis in the laboratory. Various gene transfer methods such as Agrobacterium, physicochemical uptake of DNA, liposome encapsulation, electroporation of protoplasts, microinjection, DNA injection into intact plants, incubation of seeds with DNA, pollen tube pathway, use of laser microbeam, electroporation into tissues/embryos, silicon carbide fiber method, particle bombardment, and “in planta” transformation have been developed. Among these, Agrobacterium and “particle gun” methods are being widely used. Recently RNAi and CRISPR/Cas9 systems have further expanded the scope for genome engineering. Using different gene transfer methods and strategies, transgenics carrying useful agronomic traits have been developed and released. Attempts are being made to develop transgenic varieties resistant to abiotic stresses, such as drought, low and high temperature, salts, and heavy metals, and also to develop transgenic varieties possessing better nutrient-use efficiency and better keeping and nutritional and processing qualities. Genetically modified foods, such as tomato containing high lycopene, tomato with high flavonols as antioxidants, edible vaccines, are leading examples of genetically engineered crops. Several genes of agronomic importance have been isolated from various organisms; cloned and suitable constructs have been developed for plant transformation. Agrobacterium and “particle gun” methods have been refined and now being used for genetic transformation of a wide variety of field, fruit, vegetable, forest crops, and ornamental plant species. Transgenic crops such as cotton, maize, papaya, potato, rice, soybean, and tomato, carrying mainly insect resistance, herbicide resistance, or both, are now being grown over an area of 185 million hectares spread over 28 countries of the world.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbas Z, Zafar Y, Khan SA, Mukhtar Z (2016) Transgenic expression of translational fusion of synthetic Cry1Ac and Hvt genes in tobacco confers resistance to Helicoverpa armigera and Spodoptera littoralis larvae. Pak J Agric Sci 53(4):809–816

    Google Scholar 

  • Ahmad A, Maqbool SB, Riazudin S, Sticklen B (2002) Expression of synthetic Cry1AB and Cry1AC genes in basmati rice (Oryza sativa L.) variety 370 via Agrobacterium mediated transformation for the control of the European corn borer (Ostrinia nubilalis). In Vitro Cell Dev Biol Plant 38:213–220

    Article  CAS  Google Scholar 

  • Altman A (2003) From plant tissue culture to biotechnology: scientific revolutions, abiotic stress tolerance and forestry. In Vitro Cell Dev Biol Plant 39:75–84

    Article  CAS  Google Scholar 

  • Amian AA, Papenbrock J, Jacobsen HJ, Hassan F (2011) Enhancing transgenic pea (Pisum sativum L.) resistance against fungal diseases through stacking of two antifungal genes (Chitinase and Glucanase). GM Crops 2(2):104–109

    Article  PubMed  Google Scholar 

  • Araújo WL, Nunes Nesi A, Sonia Osorio BU, Fuentes D, Nagy R, Balbo I, Lehmann M, Studart Witkowski C, Tohge T, Martinoia E, Jordana X, DaMatta FM, Fernie AR (2011) Antisense inhibition of the ironsulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid-mediated effect on stomatal aperture. Plant Cell 23(2):600–627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arora L, Narula A (2017) Gene editing and crop improvement using CRISPR-Cas9 system. Front Plant Sci 2017(8). https://doi.org/10.3389/fpls.2017.01932

  • Assem SK, Hussein EHA, Hussein HA, Awaly SB (2010) Transformation of the salt tolerance gene BIGST into Egyptian maize inbred lines. Arab J Biotechnol 13(1):99–114

    Google Scholar 

  • Bakhsh A, Khabbaz SD, Baloch FS, Demirel U, Caliskan ME, Hatipoglu R, Özcan S, Özkan H, Kandemir N (2015) Insect resistant transgenic crops: retrospect and challenges. Turk J Agric For 39(4):531–548

    Article  CAS  Google Scholar 

  • Bakshi S, Dewan D (2013) Status of transgenic cereal crops: a review. Clon Transgen 3:119. https://doi.org/10.4172/2168-9849.1000119

    Article  Google Scholar 

  • Bashir A, Khan A, Ali H, Khan I (2015) Agrobacterium mediated transformation of Brassica juncea (L.) Czern. with chitinase gene conferring resistance against fungal infections. Pak J Bot 47(1):211–216

    Google Scholar 

  • BCIL-DBT (2004) National consultation on biosafety aspects related to genetically modified organisms. Biotech Consortium India Limited, New Delhi

    Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris Life Sciences 316:1194–1199.

    Google Scholar 

  • Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein. Anal Biochem 112:195–203

    Article  PubMed  CAS  Google Scholar 

  • Cao G, Liu Y, Zhang S, Yang X, Chen R, Zhang Y et al (2012) A novel 5-enolpyruvylshikimate-3-phosphate synthase shows high glyphosate tolerance in Escherichia coli and tobacco plants. PLoS One 7(6):e38718. doi.org/10.1371/journal.pone.0038718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cardi T, D’Agostino N, Tripodi P (2017) Genetic transformation and genomic resources for next-generation precise genome engineering in vegetable crops. Front Plant Sci 8:241

    Article  PubMed  PubMed Central  Google Scholar 

  • Chahal GS, Gosal SS (2002) Principles and procedures of plant breeding: biotechnological and conventional approaches. Narosa, Publ.House, New Delhi

    Google Scholar 

  • Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klab C, Pearlsman M, Sherman A, Arazi T, Galon A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17(7):1140–1153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christou P (1994) Applications to plants. In: Yang NS, Christou P (eds) Particle bombardment technology for gene transfer. Oxford Univ. Press, New York, pp 71–99

    Google Scholar 

  • Christou P (1996) Transformation technology. Trends Plant Sci 1:423–431

    Article  Google Scholar 

  • Dale P, Irwin J, Scheffler JA (1993) The experimental and commercial release of transgenic crop plants. Plant Breed 111:1–22

    Article  CAS  Google Scholar 

  • Daniell H, Dhingra A (2002) Multigene engineering: dawn of an exciting new era in biotechnology. Curr Opin Biotechnol 13:136–141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Block M, Herrera-Estrella L, Van Montagu M, Schell J, Zambryski P (1984) Expression of foreign genes in regenerated plants and in their progeny. EMBO J 3(8):1681–1689

    Article  PubMed  PubMed Central  Google Scholar 

  • Deom CM, Schubert KR, Wolfs S, Holt CA, Lucas WJ, Beachy RN (1990) Molecular characterization and biological function of the movement protein of tobacco mosaic virus in transgenic plants. Proc Nation Acad Sci USA 87:3284–3288

    Article  CAS  Google Scholar 

  • Doshi V, Rawal H, Mukherjee S (2013) Edible vaccines from GM crops: current status and future scope. J Pharm Sci Innov 2(3):1–6

    Article  Google Scholar 

  • Duman JG, Wisniewski MJ, Wisniewski M, Gusta LV (2014) The use of antifreeze proteins for frost protection in sensitive crop plants. Special issue: the biology of plant cold hardiness: adaptive strategies. Environ Exp Bot 106:60–69

    Article  CAS  Google Scholar 

  • El-Siddig MA, El-Hussein AA, Saker MM (2011) Agrobacterium-mediated transformation of tomato plants expressing defensin gene. Int J Agric Res 6(4):323–334

    Article  CAS  Google Scholar 

  • Feldmann KA, Marks MD (1987) Agrobacterium mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol Gen Genet 208:1–9

    Article  CAS  Google Scholar 

  • Fischer R, Emans N (2000) Molecular pharming of pharmaceutical proteins. Transgenic Res 9:279–299

    Article  PubMed  CAS  Google Scholar 

  • Fraley R, Wilschut J, Düzgüneş N, Smith C, Papahadjopoulos D (1980) Studies on the mechanism of membrane fusion: role of phosphate in promoting calcium ion induced fusion of phospholipid vesicles. Biochemistry 19(26):6021–6029

    Article  PubMed  CAS  Google Scholar 

  • Frame BR, Drayton PR, Bagnall V, Lewnau CJ, Bullock WP, Wilson HM, Dunwell JM, Thompson JA, Wang K (1994) Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. Plant J 6(6):941–948

    Article  CAS  Google Scholar 

  • Fromm M, Taylor LP, Walbot V (1985) Expression of genes transferred to monocot and dicot plant cells by electroporation. Proc Natl Acad Sci U S A 82:5824–5828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fromm M, Callis J, Taylor LP, Walbot V (1987) Electroporation of DNA and RNA into plant protoplasts. Methods in Enzymology 153:351–366

    Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405. https://doi.org/10.1016/j.tibtech.2013.04.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao ZF, Qing CX, Ping YF, Qi LR, Quan ZL, Dong ZX (2006) Expression of synthesized snowdrop lectin (gna) gene in transgenic wheat and its resistance analysis against aphid. J Agric Biotechnol 14(4):559–564

    CAS  Google Scholar 

  • Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X et al (2015) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87:99–110

    Article  PubMed  CAS  Google Scholar 

  • GarcíaAbellan JO, Egea I, Pineda B, SanchezBel P, Belver A, GarciaSogo B, Flores FB, Atares A, Moreno V, Bolarin MC (2014) Heterologous expression of the yeast HAL5 gene in tomato enhances salt tolerance by reducing shoot Na+ accumulation in the long term. Physiol Plant 152(4):700–713

    Article  CAS  Google Scholar 

  • Gargouri-Bouzid R, Jaoua L, Mansour RB, Hathat Y, Ayadi M, Ellouz R (2005) PVY resistant transgenic potato plants (cv Claustar) expressing the viral coat protein. J Plant Biotechnol 7(3):1–6

    Google Scholar 

  • Gasser CS, Fraley RT (1989) Genetically engineering plants for crop improvement. Science New Series 244(4910):1293–1299

    CAS  Google Scholar 

  • Gentile A, Deng Z, Malfa SL, Distefano G, Domina F, Vitale A, Polizzi G, Lorito M, Tribulato E (2007) Enhanced resistance to Phoma tracheiphila and Botrytis cinerea in transgenic lemon plants expressing a Trichoderma harzianum chitinase gene. Plant Breed 126(2):146–151

    Article  CAS  Google Scholar 

  • Gomaa AM, Raldugina GN, Burmistrova NA, Radionov NV, Kuznetso VV (2012) Response of transgenic rape plants bearing the Osmyb4gene from rice encoding a trans-factor to low above-zero temperature. Russ J Plant Physiol 59(1):105–114

    Article  CAS  Google Scholar 

  • Gómez I, Arenas I, Pacheco S, Bravo A, Soberón M (2010) New insights into the mode of action of Cry1Ab toxin used in transgenic insect resistant crops. Southwest Entomol 35(3):387–390

    Article  Google Scholar 

  • Gosal SS, Gosal SK (2000) Genetic transformation and production of transgenic plants. In: Trivedi PC (ed) Plant biotechnology–recent advances. Panima Publishers, New Delhi, pp 29–40

    Google Scholar 

  • Gosal SS, Gill R, Sindhu AS, Deepinder K, Navraj K, Dhaliwal HS (2001) Transgenic basmati rice carrying genes for stem borer and bacterial leaf blight resistance. In: Peng S, Hardy B (eds) Rice research for food security and poverty alleviation. IRRI, Philippines, pp 353–360

    Google Scholar 

  • Grewal DK, Gill R, Gosal SS (2006) Genetic engineering of Oryza sativa by particle bombardment. Biol Plant 50(2):311–314

    Article  CAS  Google Scholar 

  • Grimsley N, Hohn T, Daview JW, Hohn B (1987) Agrobacterium mediated delivery of infectious maize streak virus into maize plants. Nature 325:177–179

    Article  CAS  Google Scholar 

  • Gunther N, Spangenberg G (1990) Plant transformation by microinjection techniques. Physiol Plant 79:213–217

    Article  Google Scholar 

  • Gupta B, Saha J, Sengupta A, Gupta K (2013) Recent advances on virus induced gene silencing (VIGS): plant functional genomics. J Plant Biochem Physiol 1:e116. https://doi.org/10.4172/2329-9029.1000e116

    Article  Google Scholar 

  • Guttikonda SK, Marri P, Mammadov J, Ye L, Soe K, Richey K et al (2016) Molecular characterization of transgenic events using next generation sequencing approach. PLoS One 11(2):e0149515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Helliwell EE, Wang Q, Yang YN (2013) Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani. Plant Biotechnol J 11(1):33–42

    Article  PubMed  CAS  Google Scholar 

  • Herbers K (2003) Vitamin production in transgenic plants. Plant Physiol 160:821–829

    Article  CAS  Google Scholar 

  • Hérouet C, Esdaile DJ, Mallyon BA, Debruyne E, Schulz A, Currier T, Hendrickx K, van der Klis RJ, Rouan D (2005) Safety evaluation of the phosphinothricin acetyltransferase proteins encoded by the pat and bar sequences that confer tolerance to glufosinate ammonium herbicide in transgenic plants. Regul Toxicol Pharmacol 41(2):134–149

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Estrella L (1983) Transfer and expression of foreign genes in plants. PhD thesis. Laboratory of Genetics. Gent University, Belgium

    Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oriza sativa) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Hilder VA, Boulter D (1999) Genetic engineering of crop plants for insect resistance – a critical review. Crop Prot 18:177–191

    Article  Google Scholar 

  • Hooykaas PJJ, Schilperoort RA (1992) Agrobacterium and plant genetic engineering. Plant Mol Biol 19:1538

    Article  Google Scholar 

  • Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A, Hoffmann N (1984) Inheritance of functional foreign genes in plants. Science 223(4635):496–498

    Article  PubMed  CAS  Google Scholar 

  • ISAAA (2016) Global status of commercialized biotech/GM crops: 2016. ISAAA Brief No. 52. ISAAA, Ithaca, NY

    Google Scholar 

  • Ismail I, Lee FS, Abdullah R, Fee CK, Zainal Z, Sidik NM, Zain CRCM (2010) Molecular and expression analysis of cowpea trypsin inhibitor (CpTI) gene in transgenic Elaeis guineensis Jacq leaves. Aust J Crop Sci 4(1):37–48

    CAS  Google Scholar 

  • Iwasaki M, Ito K, Kawabe K, Sugito T, Nitta T, Takigawa S, Ito K, Nakata T, Ogawa Y, Hayano Y, Fukumoto F (2005) Evaluation of agronomic traits and environmental biosafety of a transgenic tomato plant expressing satellite RNA of Cucumber Mosaic Virus. Research Bulletin of the National Agricultural Research Center for Hokkaido Region (182) Sapporo:51–63

    Google Scholar 

  • Jia XX, Qi EF, Ma S, Hu XY, Wang YH, Wen GH, Gong CW, Li JW (2015) Analysis of drought tolerance and herbicide resistance in transgenic potato plants overexpressing DREB1A/Bar. Acta Prataculturae Sinica 24(11):58–64

    Google Scholar 

  • Jing GX, Zeng FH, Li FQ, Chen YS, He YM (2009) Transformation of a trivalent antifungal recombinant into pepper (Capsicum annuum L.). Jiangsu J Agric Sci 25(1):165–168

    Google Scholar 

  • Junjie Z, Fan L, Hong Z, Chen L (2006) Vacuum infiltration transformation of pakchoi (B. rapa subsp. chinensis) with gene pin II and the bioassay for Plutella xylostella resistance. Acta Phytophyacica Sin 33(1):17–21

    Google Scholar 

  • Kaeppler HF, Gu W, Somers DA, Rines HW, Cockburn AF (1990) Silicon carbide fiber-mediated DNA delivery into plant cells. Plant Cell Rep 9(8):415–418

    Article  PubMed  CAS  Google Scholar 

  • Kamthan A, Chaudhuri A, Kamthan M, Datta A (2016) Genetically modified (GM) crops: milestones and new advances in crop improvement. Theor Appl Genet 129(9):1639–1655

    Article  PubMed  CAS  Google Scholar 

  • Kerr A (2011) GM crops – a minireview. Australas Plant Pathol 40(5):449–452

    Article  Google Scholar 

  • Keshamma E, Rohini S, Rao KS, Madhusudhan B, Kumar MU (2008) Tissue culture independent in planta transformation strategy: an Agrobacterium tumefaciens mediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.). J Cotton Sci 12(3):264–272

    CAS  Google Scholar 

  • Kim DH, Rossi JJ (2008) RNAi mechanisms and applications. Biotechniques 44:613–616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73

    Article  CAS  Google Scholar 

  • Kloti A, lglesias VA, Wunn J, Burkdardt PK, Datta SK, Potrykus I (1993) Gene transfer by electroporation into intact scutellum cells of wheat embryos. Plant Cell Rep 12:671–675

    Article  PubMed  CAS  Google Scholar 

  • Kumar SK, Sivanesan I, Murugesan K et al (2014) Enhancing salt tolerance in eggplant by introduction of foreign halotolerance gene, HAL1 isolated from yeast. Horticulture, Environment and Biotechnology 55:222

    Article  CAS  Google Scholar 

  • Nayak L, Pandey H, Ammayappan L, Ray DP (2011) Genetically modified crops – a review. Agricultural Reviews 32(2):112–119

    Google Scholar 

  • Ledoux L (1965) Uptake of DNA by living cells. Progr Nucl Acid Res Mol Biol 4:231–267

    Article  CAS  Google Scholar 

  • Leelavathi S, Sunnichan VG, Kumria R, Vijaykanth GP, Bhatnagar RK, Reddy VS (2004) A simple and rapid Agrobacterium mediated transformation protocol for cotton (Gossypium hirsutum L.): embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep 22:465–470

    Article  PubMed  CAS  Google Scholar 

  • Lörz H, Baker B, Schell J (1985) Gene transfer to cereal cells mediated by protoplast transformation. Mol Gen Genet 199:178–182

    Article  Google Scholar 

  • Lu R, Martin-Hernandez AM, Peart JR, Malcuit I, Baulcombe DC (2003) Virus-induced gene silencing in plants. Methods 30(4):296–303

    Article  PubMed  CAS  Google Scholar 

  • Mathews H, Wagoner W, Cohen C, Kellogg J, Bestwick R (1995) Efficient genetic transformation of red raspberry Rubus idaeus L. Plant Cell Rep 14:471–476

    Article  PubMed  CAS  Google Scholar 

  • McCafferty HRK, Moore PH, Zhu YJ (2008) Papaya transformed with the Galanthus nivalis GNA gene produces a biologically active lectin with spider mite control activity. Plant Sci 175(3):385–393

    Article  CAS  Google Scholar 

  • Mehta R, Thankappan R, Kumar A, Yadav R, Dobaria JR, Thirumalaisamy PP, Jain RK, Chigurupati P (2013) Coat protein mediated transgenic resistance of peanut (Arachis hypogaea L.) to peanut stem necrosis disease through Agrobacterium mediated genetic transformation. Indian J Virol 24(2):205–213

    Article  PubMed  PubMed Central  Google Scholar 

  • Mi XX, Liu X, Yan HL, Liang L, Zhou XY, Yang JW, Si HJ, Zhang N (2017) Expression of the Galanthus nivalis agglutinin (GNA) gene in transgenic potato plants confers resistance to aphids. C R Biol 340(1):7–12

    Article  PubMed  Google Scholar 

  • Moore GA, Gutierrez EA, Jacono A, Jacono C, Caffery MC, Cline K (1993) Production of transgenic citrus plants expressing the citrus tristeza virus coat protein gene. HortScience 28:512

    Google Scholar 

  • Mulwa RMS, Norton MA, Farrand SK, Skirvin RM (2007) Agrobacterium mediated transformation and regeneration of transgenic ‘Chancellor’ wine grape plants expressing the tfdA gene. Vitis 46(3):110–115

    CAS  Google Scholar 

  • Neuhas G, Spangenberg G, Mittelsten Scheid O, Schweiger HG (1987) Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids. Theor Appl Genet 75(1):30–36

    Google Scholar 

  • Nirala NK, Das DK, Srivastava PS, Sopory SK, Upadhyaya KC (2010) Expression of a rice chitinase gene enhances antifungal potential in transgenic grapevine (Vitis vinifera L.). Vitis 49(4):181–187

    CAS  Google Scholar 

  • Park YH, Choi CH, Park EM, Kim HS, Park HJ, Bae SC, Ahn I, Kim MG, ParkSR HDJ (2012) Overexpression of rice leucine-rich repeat protein results in activation of defense response, thereby enhancing resistance to bacterial soft rot in Chinese cabbage. Plant Cell Rep 31(10):1845–1850

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski J, Shillito RD, Saul M, Mandák V, Hohn T, Hohn B, Potrykus I (1984) Direct gene transfer to plants. EMBO J 3(12):2717–2722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perl A, Galili S, Shaul O, Ben-Tzvi I, Galili G (1993) Bacterial dihydrodipicolinate synthase and desensitized aspartate kinase: two novel selectable markers for plant transformation. Biotechnology 11:715–718

    CAS  Google Scholar 

  • Pescitelli SM, Sukhapinda K (1995) Stable transformation via electroporation into maize type II callus and regeneration of fertile transgenic plants. Plant Cell Rep 14:712–716

    Article  PubMed  CAS  Google Scholar 

  • Pratap D, Raj SK, Kumar S, Snehi SK, Gautam KK, Sharma AK (2012) Coat protein mediated resistance. Acta Phytophylacica Sin 33(1):17–21

    Google Scholar 

  • Punja ZK, Wally O, Jayaraj J, Onus AN (2016) Transgenic approaches to enhance disease resistance in carrot plants to fungal pathogens. Acta Hortic (1145):143–152

    Google Scholar 

  • Rakosy-Tican E, Aurori CM, Dijkstra C, Thieme R, Aurori A, Davey MR (2007) The usefulness of the gfp reporter gene for monitoring Agrobacterium mediated transformation of potato dihaploid and tetraploid genotypes. Plant Cell Rep 26(5):661–671

    Article  PubMed  CAS  Google Scholar 

  • Rasul F, Sohail MN, Mansoor S, Asad S (2014) Enhanced transformation efficiency of Saccharum officinarum by vacuum infiltration assisted Agrobacterium-mediated transformation. Int J Agric Biol 16(6):1147–1152

    CAS  Google Scholar 

  • Ray K, Bisht NC, Pental D, Burma PK (2007) Development of barnase/barstar transgenics for hybrid seed production in Indian oilseed mustard (Brassica juncea L. Czern & Coss) using a mutant acetolactate synthase gene conferring resistance to imidazolinone-based herbicide ‘Pursuit’. Curr Sci 93(10):1390–1396

    CAS  Google Scholar 

  • Rhodes CA, Marrs KA, Murry LE (1995) Transformation of maize by electroporation of embryos. Methods in molecular biology 55. In: Plant cell electroporation and electrofusion protocols, vol 55. Springer, Totowa, pp 121–131

    Chapter  Google Scholar 

  • Sanford JC (1988) The biolistic process. Trends Biotechnol 6:299–302

    Article  CAS  Google Scholar 

  • Sanford JC (1990) Biolistic plant transformation. Physiol Plant 79:206–209

    Article  CAS  Google Scholar 

  • Sanford JC, Skubik KA, Reisch BI (1985) Attempted pollen-mediated plant transformation employing genomic donor DNA. Theor Appl Genet 69:571–574

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Takamizo T (2009) Conferred resistance to an acetolactate synthase-inhibiting herbicide in transgenic tall fescue (Festuca arundinacea Schreb.). Hortscience 44(5):1254–1257

    Google Scholar 

  • Saul MW, Potrykus I (1990) Direct gene transfer to protoplasts: fate of the transferred genes. Dev Genet 11:176–181

    Article  CAS  Google Scholar 

  • Sawardekar SV, Mhatre NK, Sawant SS, Bhave SG, Gokhale NB, Narangalkar AL, Katageri IS, Kumar PA (2012) Agrobacterium mediated genetic transformation of pigeonpea [Cajanus cajan (L.) Millisp] for pod borer resistance: optimization of protocol. Indian J Genet Plant Breed 72(3):380–383

    Google Scholar 

  • Schoonbeek HJ, Wang HH, Stefanato FL, Craze M, Bowden S, Wallington E, Zipfel C, Ridout C (2015) Arabidopsis EFTu receptor enhances bacterial disease resistance in transgenic wheat. New Phytol 206(2):606–613

    Article  PubMed  CAS  Google Scholar 

  • Shah DM, Rommens CMT, Beachy R (1995) Resistance to disease and insects in transgenic plants: progress and applications to agriculture. Trends Biotechnol 13:362–368

    Article  CAS  Google Scholar 

  • Sharfudeen S, Begum MC, Deepthi CDN, Gullapalli L, Sulthana MR, Akula R, Tejaswini SSN (2014) Transgenic technology: an overview, current status & future perspectives. J Pharm Res 8(4):474–485

    Google Scholar 

  • Shimada TL, Shimada T, Hara-Nishimura I (2010) A rapid and nondestructive screenable marker, FAST, for identifying transformed seeds of Arabidopsis thaliana. Plant J 61(3):519–528

    Article  PubMed  CAS  Google Scholar 

  • Shimada T, Ogawa Y, Shimada T, Hara-Nishimura I (2011) A non-destructive screenable marker, OsFAST, for identifying transgenic rice seeds. Plant Signal Behav 6(10):1454–1456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98(3):503–517

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Liu XX, Li L, Guan Y, Zhang J (2015) Breeding of transgenic maize with resistance to the Asian corn borer (Ostrinia furnacalis) and tolerance to glyphosate. J Agric Biotechnol 23(1):52–60

    CAS  Google Scholar 

  • Takahashi W, Tanaka O, Rao GP, Zhao Y, Radchuk VV, Bhatnagar SK (2008) Whisker mediated transformation: the simplest method for direct gene transfer in higher plants. Advances in plant biotechnology Houston: Studium Press LLC 2008:63–80

    Google Scholar 

  • Takakura Y, Fk C, Ishida Y, Tsutsumi F, Kurotani K, Usami S, Isogai A, Imaseki H (2008) Expression of a bacterial flagellin gene triggers plant immune responses and confers disease resistance in transgenic rice plants. Mol Plant Pathol 9(4):525–529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang W, Kinken K, Newton RJ (2005) Inducible antisense mediated posttranscriptional gene silencing in transgenic pine cells using green fluorescent protein as a visual marker. Plant Cell Physiol 46(8):255–1263

    Article  CAS  Google Scholar 

  • Tanuja P, Kumar AL (2017) Transgenic fruit crops – a review. Int J Curr Microbiol App Sci 6(8):2030–2037

    Article  Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37:959–967

    Article  PubMed  CAS  Google Scholar 

  • Trick HN, Finer JJ (1997) SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Res 6(5):329–336

    Article  CAS  Google Scholar 

  • Uchimiya H, Fushimi T, Hashimoto H, Harada H, Syono K, Sugawara Y (1986) Expression of a foreign gene in callus derived from DNA treated protoplasts of rice (Oryza sativa L.). Molecular & General Genetics 204:204–207

    Article  CAS  Google Scholar 

  • Wang XJ, Dong L, Miao MM, Tang QL, Wang ZX (2011) Construction of a standard reference plasmid for detecting CPTI gene in transgenic cotton. China Biotechnol 31(8):85–91

    Google Scholar 

  • Wang H, Russa ML, QiLS (2016) CRISPR/Cas9in genome editing and beyond. Annu Rev Biochem 85:227–264

    Article  PubMed  CAS  Google Scholar 

  • Waters DL, Shapter FM (2014) The polymerase chain reaction (PCR): general methods. Methods Mol Biol 1099:65–75

    Article  PubMed  CAS  Google Scholar 

  • Weber G, Monajembashi S, Wolfrum J, Greulich KO (1989) A laser microbeam as a tool to introduce genes into cells and organelles of higher plants. Ber Bunsen Phys Chem 93:252–254

    Article  CAS  Google Scholar 

  • Xiao SH, Zhao J, Liu JG, Wu QJ, Wang YQ, Chu CC, Yu JZ, Yu DY (2016) Transgenic upland cotton lines of Gastrodia antifungal protein gene and their performance of resistance to Verticillium wilt. Acta Agron Sin 42:212–221

    Article  Google Scholar 

  • Xu QF, Tian F, Chen X, Li LC, Lin ZS, Mo Y et al (2005) Molecular test and aphid resistance identification of a new transgenic wheat line with the GNA gene. J Triticeae Crops 25(3):7–10

    Google Scholar 

  • Yang NS, Christou P (eds) (1994) Particle bombardment technology for gene transfer. Oxford University Press, New York, pp 143–165

    Google Scholar 

  • YongFeng F, YongSheng L, YunLing P, Wang F, Wang W, YanZhao M, Wang HN (2012) Agrobacterium mediated transformation of maize shoot apical meristem by introducing fused gene ChilinkerGlu and bar. Acta Prataculturae Sinica 21(5):69–76

    Google Scholar 

  • Younis A, Siddique MI, Kim CK, Lim KB (2014) RNA interference (RNAi) induced gene silencing: a promising approach of hi-tech plant breeding. Int J Biol Sci 10(10):1150–1158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu H, Zhao Z, Wang L, Liu QQ, Gong Z, Gu MH (2007) Breeding of transgenic rice lines with GNA and bar genes resistance to both brown planthopper and herbicide. Acta Phytophylacica Sin 34(5):555–556

    Google Scholar 

  • Yue Y, Kun L, Guixang W, Fan L (2011) Inheritance and expression of pin II gene in DH transgenic lines and F1 hybrids of Chinese cabbage. Mol Plant Breed 9(3):350–356

    Google Scholar 

  • YunHee K, MyoungDuck K, SungChul P, JaeCheol J, SangSoo K, HaengSoon L (2016) Transgenic potato plants expressing the cold inducible transcription factor SCOF1 display enhanced tolerance to freezing stress. Plant Breed 135(4):513–518

    Article  CAS  Google Scholar 

  • Zhang W, Pang Y (2009) Impact of IPM and Transgenics in the Chinese Agriculture. In: Peshin R, Dhawan AK (eds) Integrated Pest Management: Dissemination and Impact. Springer, Dordrecht

    Google Scholar 

  • Zhu YJ, Agbayani R, Tang CS, Moore PH, Souza M, Drew R (2010) Developing transgenic papaya with improved fungal disease resistance. Acta Hortic (864):39–44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gosal, S.S., Wani, S.H. (2018). Plant Genetic Transformation and Transgenic Crops: Methods and Applications. In: Gosal, S., Wani, S. (eds) Biotechnologies of Crop Improvement, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-90650-8_1

Download citation

Publish with us

Policies and ethics