Skip to main content

Microbiome and Diet

  • Chapter
  • First Online:

Abstract

The importance of gut microbiome in influencing human health has been widely assessed. The gut microbiome may vary according to several extrinsic factors, among which diet can be considered one of the most important. Substrates provided through diet are metabolized by the gut microbiome, with the possible production of beneficial or harmful metabolites. In the past decades, dietary habits in the Western world have strongly changed, with an increase in the consumption of foods of animal origin and a decrease in the intake of fiber and complex polysaccharides. These changes in the diet impacted our microbial symbionts, possibly playing a role in the development of several diseases. The understanding of these relationships will allow, in a next future, a targeted modulation of the gut microbiome through ad hoc dietary interventions for therapeutic or preventive purposes. In this chapter, recent findings about the existing interconnections between gut microbiome, diet, and human health are discussed, highlighting possible future perspectives.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agnoli, C., Krogh, V., Grioni, S., et al. (2011). A priori–defined dietary patterns are associated with reduced risk of stroke in a large Italian cohort. The Journal of Nutrition, 141, 1552–1558.

    Article  CAS  PubMed  Google Scholar 

  • Arumungam, M., Raes, J., Pelletier, E., et al. (2011). Enterotypes of the human gut microbiome. Nature, 473(7346), 174–180.

    Article  CAS  Google Scholar 

  • Breton, J., Tennoune, N., Lucas, N., et al. (2016). Gut commensal E. coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metabolism, 23(2), 324–334.

    Article  CAS  PubMed  Google Scholar 

  • Cardona, F., Andrés-Lacueva, C., Tulipani, S., et al. (2013). Benefits of polyphenols on gut microbiota and implications in human health. The Journal of Nutritional Biochemistry, 24, 1415–1422.

    Article  CAS  PubMed  Google Scholar 

  • Clemente, J. C., Pehrsson, E. C., Blaser, M. J., et al. (2015). The microbiome of uncontacted Amerindians. Science Advances, 1(3), e1500183. https://doi.org/10.1126/sciadv.1500183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • David, L. A., Maurice, C. F., Carmody, R. N., et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563.

    Article  CAS  PubMed  Google Scholar 

  • De Filippis, F., Pellegrini, N., Vannini, L., et al. (2016). High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut, 65(11), 1812–1821.

    Article  CAS  PubMed  Google Scholar 

  • De Filippo, C., Cavalieri, D., Di Paola, M., et al. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14691–14696.

    Article  PubMed  PubMed Central  Google Scholar 

  • Estruch, R., Ros, E., Salas-Salvadó, J., et al. (2013). Primary prevention of cardiovascular disease with a Mediterranean diet. The New England Journal of Medicine, 368(14), 1279–1290.

    Article  CAS  PubMed  Google Scholar 

  • Flint, H. J., Scott, K. P., Duncan, S. H., et al. (2012). Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 3(4), 289–306.

    Article  PubMed  PubMed Central  Google Scholar 

  • Furness, J. B., Rivera, L. R., Cho, H.-J., et al. (2013). The gut as a sensory organ. Nature Reviews Gastroenterology & Hepatology, 10, 729–740.

    Article  CAS  Google Scholar 

  • Girard, C., Tromas, N., Amyot, M., et al. (2017). Gut microbiome of the Canadian arctic Inuit. mSphere, 2(1), e00297-16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomez, A., Petrzelkova, K. J., Burns, M. B., et al. (2016a). Gut microbiome of coexisting BaAka pygmies and Bantu reflects gradients of traditional subsistence patterns. Cell Reports, 14(9), 2142–2153.

    Article  CAS  PubMed  Google Scholar 

  • Gomez, A., Rothman, J. M., Petrzelkova, K., et al. (2016b). Temporal variation selects for diet–microbe co-metabolic traits in the gut of Gorilla spp. The ISME Journal, 10, 514–526.

    Article  CAS  PubMed  Google Scholar 

  • Jeffery, I. B., Claesson, M. J., O’Toole, P. W., & Shanahan, F. (2012). Categorization of the gut microbiota: Enterotypes or gradients? Nature Reviews Microbiology, 10(9), 591–592.

    Article  CAS  PubMed  Google Scholar 

  • Knights, D., Ward, T. L., McKinlay, C. E., et al. (2014). Rethinking “enterotypes”. Cell Host & Microbe, 16(4), 433–437.

    Article  CAS  Google Scholar 

  • Koeth, R. A., Wang, Z., Levison, B. S., et al. (2013). Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine, 19(5), 576–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovatcheva-Datchary, P., Nilsson, A., Akrami, R., et al. (2015). Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metabolism, 22(6), 971–982.

    Article  CAS  PubMed  Google Scholar 

  • Le Chatelier, E., Nielsen, T., Qin, J., et al. (2013). Richness of human gut microbiome correlates with metabolic markers. Nature, 500(7464), 541–546.

    Article  CAS  PubMed  Google Scholar 

  • Ley, R. E., Hamady, M., Lozupone, C., et al. (2008). Evolution of mammals and their gut microbes. Science, 320, 1647–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loh, Y. H., Jakszyn, P., Luben, R. N., et al. (2011). N-nitroso compounds and cancer incidence: The European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk Study. The American Journal of Clinical Nutrition, 93(5), 1053–1061.

    Article  CAS  PubMed  Google Scholar 

  • Louis, P., Hold, G. L., & Flint, H. J. (2014). The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology, 12(10), 661–672.

    Article  CAS  PubMed  Google Scholar 

  • Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., et al. (2012). Diversity, stability and resilience of the human gut microbiota. Nature, 489(7415), 220–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magee, P. J. (2011). Is equol production beneficial to health? The Proceedings of the Nutrition Society, 70(1), 10–18.

    Article  CAS  PubMed  Google Scholar 

  • Marchesi, J. R., Adams, D. H., Fava, F., et al. (2016). The gut microbiota and host health: A new clinical frontier. Gut, 65, 330–339.

    Article  PubMed  Google Scholar 

  • Martínez, I., Stegen, J. C., Maldonado-Gómez, M. X., et al. (2015). The gut microbiota of rural Papua New Guineans: Composition, diversity patterns, and ecological processes. Cell Reports, 11(4), 527–538.

    Article  CAS  PubMed  Google Scholar 

  • Melina, V., Craig, W., & Levin, S. (2016). Position of the academy of nutrition and dietetics: Vegetarian diets. Journal of the Academy of Nutrition and Dietetics, 116(12), 1970–1980.

    Article  PubMed  Google Scholar 

  • O’Keefe, S. J. (2016). Diet, microorganisms and their metabolites, and colon cancer. Nature Reviews Gastroenterology & Hepatology, 13(12), 691–706.

    Article  CAS  Google Scholar 

  • O’Keefe, S. J., Li, J. V., Lahti, L., et al. (2015). Fat, fibre and cancer risk in African Americans and rural Africans. Nature Communications, 6, 6342. https://doi.org/10.1038/ncomms7342.

    Article  PubMed  CAS  Google Scholar 

  • Obregon-Tito, A. J., Tito, R. Y., Metcalf, J., et al. (2015). Subsistence strategies in traditional societies distinguish gut microbiomes. Nature Communications, 6, 6505. https://doi.org/10.1038/ncomms7505.

    Article  PubMed  CAS  Google Scholar 

  • Ochman, H., Worobey, M., Kuo, C. H., et al. (2010). Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biology, 8(11), e10000546. https://doi.org/10.1371/journal.pbio.1000546.

    Article  CAS  Google Scholar 

  • Ou, J., Carbonero, F., Zoetendal, E. G., et al. (2013). Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. The American Journal of Clinical Nutrition, 98(1), 111–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen, H. K., Gudmundsdottir, V., Nielsen, H. B., et al. (2016). Human gut microbes impact host serum metabolome and insulin sensitivity. Nature, 535(7612), 376–381.

    Article  CAS  PubMed  Google Scholar 

  • Qin, J., Li, Y., Cai, Z., et al. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418), 55–60.

    Article  CAS  PubMed  Google Scholar 

  • Rampelli, S., Schnorr, S. L., Consolandi, C., et al. (2015). Metagenome sequencing of the Hadza hunter-gatherer gut microbiota. Current Biology, 25(13), 1682–1693.

    Article  CAS  PubMed  Google Scholar 

  • Russell, W. R., Gratz, S. W., Duncan, S. H., et al. (2011). High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. The American Journal of Clinical Nutrition, 93(5), 1062–1072.

    Article  CAS  PubMed  Google Scholar 

  • Salas-Salvadó, J., Bulló, M., Babio, N., et al. (2011). Reduction in the incidence of type 2 diabetes with the Mediterranean diet results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care, 34(1), 14–19.

    Article  PubMed  Google Scholar 

  • Santoro, A., Pini, E., Scurti, M., et al. (2014). Combating inflammaging through a Mediterranean whole diet approach: The NU-AGE project’s conceptual framework and design. Mechanisms of Ageing and Development, 136-137, 3–13.

    Article  PubMed  Google Scholar 

  • Schnorr, S. L., Candela, M., Rampelli, S., et al. (2014). Gut microbiome of the Hadza hunter-gatherers. Nature Communications, 5, 3654. https://doi.org/10.1038/ncomms4654.

    Article  PubMed  CAS  Google Scholar 

  • Sonnenburg, E. D., Smits, S. A., Tikhonov, M., et al. (2016). Diet-induced extinctions in the gut microbiota compound over generations. Nature, 529(7585), 212–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, W. H. W., Wang, Z., Levison, B. S., et al. (2013). Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. The New England Journal of Medicine, 368, 1575–1584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trichopoulou, A., Kouris-Blazos, A., Wahlqvist, M. L., et al. (1995). Diet and overall survival in elderly people. BMJ, 311, 1457–1460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., et al. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027–1031.

    Article  PubMed  Google Scholar 

  • Wang, Z., Klipfell, E., Bennett, B. J., et al. (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472(7341), 57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, G. D., Chen, J., Hoffmann, C., et al. (2011). Linking long term dietary patterns with gut microbial enterotypes. Science, 334(6052), 105–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, G. D., Compher, C., Chen, E. Z., et al. (2016). Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut, 65, 63–72.

    Article  CAS  PubMed  Google Scholar 

  • Yatsunenko, T., Rey, F. E., Manary, M. J., et al. (2012). Human gut microbiome viewed across age and geography. Nature, 486(7402), 222–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeevi, D., Korem, T., Zmora, N., et al. (2015). Personalized nutrition by prediction of glycemic responses. Cell, 163(5), 1079–1094.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Ercolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Filippis, F., Ercolini, D. (2018). Microbiome and Diet. In: Haller, D. (eds) The Gut Microbiome in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-90545-7_6

Download citation

Publish with us

Policies and ethics