Skip to main content

Microbiome and Diseases: Neurological Disorders

  • Chapter
  • First Online:
The Gut Microbiome in Health and Disease

Abstract

An increasing amount of evidence implicates that the gastrointestinal microbiota affects a vast range of neuronal functions from neurodevelopment and synaptic signaling to behavior. This microbe-host interplay occurs at the level of the peripheral and central nervous system and is commonly referred to as “microbiome-gut-brain axis.” Preclinical and clinical data also highlight the significant association of gut microbiome dysbiosis and the development and progression of psychiatric and neurological disorders. The present chapter will outline how the gut microbiota signals to the brain and how it affects brain development and function describing representative examples. Finally, it will discuss the complex interaction of intestinal microbiota and neuropsychiatric disorders.

Autointoxication genera is a historical concept from the early era of gut-brain axis research used to explain mental illness:

“It is far from our mind to conceive that all mental conditions have the same etiological factor, but we feel justified in recognizing the existence of cases of mental disorders which have as a basic etiological factor a toxic condition arising in the gastrointestinal tract.”

Armando Ferraro and Joseph E. Kilman;

The New York Psychiatric Institute, in Psychiatric Quarterly (Ferraro and Kilman 1933)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akkasheh, G., Kashani-Poor, Z., Tajabadi-Ebrahimi, M., Jafari, P., Akbari, H., Taghizadeh, M., et al. (2016). Clinical and metabolic response to probiotic administration in patients with major depressive disorder: A randomized, double-blind, placebo-controlled trial. Nutrition, 32, 315–320.

    Article  PubMed  CAS  Google Scholar 

  • Anitha, M., Vijay-Kumar, M., Sitaraman, S. V., Gewirtz, A. T., & Srinivasan, S. (2012). Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology, 143, 1006–1016.e1004.

    Article  PubMed  CAS  Google Scholar 

  • Arentsen, T., Qian, Y., Gkotzis, S., Femenia, T., Wang, T., Udekwu, K., et al. (2017). The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain development and behavior. Molecular Psychiatry, 22, 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Arentsen, T., Khalid, R., Qian, Y., & Diaz Heijtz, R. (2018). Sex-dependent alterations in motor and anxiety-like behavior of aged bacterial peptidoglycan sensing molecule 2 knockout mice. Brain, Behavior, and Immunity, 67, 345–354.

    Article  PubMed  CAS  Google Scholar 

  • Bahr, S. M., Tyler, B. C., Wooldridge, N., Butcher, B. D., Burns, T. L., Teesch, L. M., et al. (2015). Use of the second-generation antipsychotic, risperidone, and secondary weight gain are associated with an altered gut microbiota in children. Translational Psychiatry, 5, e652.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bahra, S. M., Weidemann, B. J., Castro, A. N., Walsh, J. W., deLeon, O., Burnett, C. M., et al. (2015). Risperidone-induced weight gain is mediated through shifts in the gut microbiome and suppression of energy expenditure. eBioMedicine, 2, 1725–1734.

    Article  Google Scholar 

  • Bedarf, J. R., Hildebrand, F., Coelho, L. P., Sunagawa, S., Bahram, M., Goeser, F., et al. (2017). Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson’s disease patients. Genome Medicine, 9, 39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belkaid, Y., & Harrison, O. J. (2017). Homeostatic Immunity and the Microbiota. Immunity, 46, 562–576.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bellono, N. W., Bayrer, J. R., Leitch, D. B., Castro, J., Zhang, C., O’Donnell, T. A., et al. (2017). Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell, 170, 185–198.e116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benakis, C., Brea, D., Caballero, S., Faraco, G., Moore, J., Murphy, M., et al. (2016). Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nature Medicine, 22, 516–523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bercik, P., Denou, E., Collins, J., Jackson, W., Lu, J., Jury, J., et al. (2011a). The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141, 599–609, 609.e591–593.

    Google Scholar 

  • Bercik, P., Park, A. J., Sinclair, D., Khoshdel, A., Lu, J., Huang, X., et al. (2011b). The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterology and Motility, 23, 1132–1139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berer, K., Mues, M., Koutrolos, M., Rasbi, Z. A., Boziki, M., Johner, C., et al. (2011). Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature, 479, 538–541.

    Article  PubMed  CAS  Google Scholar 

  • Berer, K., Gerdes, L. A., Cekanaviciute, E., Jia, X., Xiao, L., Xia, Z., et al. (2017). Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proceedings of the National Academy of Sciences of the United States of America, 114, 10719–10724.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bested, A. C., Logan, A. C., & Selhub, E. M. (2013). Intestinal microbiota, probiotics and mental health: From Metchnikoff to modern advances: Part I – autointoxication revisited. Gut Pathogens, 5, 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Birnbaum, R., & Weinberger, D. R. (2017). Genetic insights into the neurodevelopmental origins of schizophrenia. Nature Reviews. Neuroscience, 18(12), 727–740.

    Article  PubMed  CAS  Google Scholar 

  • Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Tóth, M., et al. (2014). The gut microbiota influences blood-brain barrier permeability in mice. Science Translational Medicine, 6, 263ra158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Branton, W. G., Lu, J. Q., Surette, M. G., Holt, R. A., Lind, J., Laman, J. D., et al. (2016). Brain microbiota disruption within inflammatory demyelinating lesions in multiple sclerosis. Scientific Reports, 6, 37344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G., et al. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences of the United States of America, 108, 16050–16055.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brenner, D., Hiergeist, A., Adis, C., Mayer, B., Gessner, A., Ludolph, A. C., et al. (2017). The fecal microbiome of ALS patients. Neurobiology of Aging, 61, 132–137.

    Article  PubMed  Google Scholar 

  • Brower, D. R. (1898). Auto-intoxication in its relations to the diseases of the nervous system. JAMA, 30, 575–577.

    Article  Google Scholar 

  • Browning, K. N., & Travagli, R. A. (2014). Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Comprehensive Physiology, 4, 1339–1368.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buffington, S. A., Di Prisco, G. V., Auchtung, T. A., Ajami, N. J., Petrosino, J. F., & Costa-Mattioli, M. (2016). Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell, 165, 1762–1775.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burokas, A., Arboleya, S., Moloney, R. D., Peterson, V. L., Murphy, K., Clarke, G., et al. (2017). Targeting the microbiota-gut-brain axis: Prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biological Psychiatry, 82, 472–487.

    Article  PubMed  CAS  Google Scholar 

  • Cao, X., Lin, P., Jiang, P., & Li, C. (2013). Characteristics of the gastrointestinal microbiome in children with autism spectrum disorder: A systematic review. Shanghai Archives of Psychiatry, 25, 342–353.

    PubMed  PubMed Central  Google Scholar 

  • Castro-Nallar, E., Bendall, M. L., Pérez-Losada, M., Sabuncyan, S., Severance, E. G., Dickerson, F. B., et al. (2015). Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls. PeerJ, 3, e1140.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cekanaviciute, E., Yoo, B. B., Runia, T. F., Debelius, J. W., Singh, S., Nelson, C. A., et al. (2017). Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proceedings of the National Academy of Sciences of the United States of America, 114, 10713–10718.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, J., Chia, N., Kalari, K. R., Yao, J. Z., Novotna, M., Soldan, M. M., et al. (2016). Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Scientific Reports, 6, 28484.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R. D., Shanahan, F., et al. (2013). The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Molecular Psychiatry, 18, 666–673.

    Article  PubMed  CAS  Google Scholar 

  • Coccaro, E. F., Lee, R., Groer, M. W., Can, A., Coussons-Read, M., & Postolache, T. T. (2016). Toxoplasma gondii infection: Relationship with aggression in psychiatric subjects. The Journal of Clinical Psychiatry, 77, 334–341.

    Article  PubMed  Google Scholar 

  • Collins, J., Borojevic, R., Verdu, E. F., Huizinga, J. D., & Ratcliffe, E. M. (2014). Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterology and Motility, 26, 98–107.

    Article  PubMed  CAS  Google Scholar 

  • Davey, K. J., Cotter, P. D., O’Sullivan, O., Crispie, F., Dinan, T. G., Cryan, J. F., et al. (2013). Antipsychotics and the gut microbiome: Olanzapine-induced metabolic dysfunction is attenuated by antibiotic administration in the rat. Translational Psychiatry, 3, e309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Theije, C. G., Bavelaar, B. M., Lopes da Silva, S., Korte, S. M., Olivier, B., Garssen, J., et al. (2014). Food allergy and food-based therapies in neurodevelopmental disorders. Pediatric Allergy and Immunology, 25, 218–226.

    Article  PubMed  Google Scholar 

  • De Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., Vinera, J., Zitoun, C., Duchampt, A., et al. (2014). Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell, 156, 84–96.

    Article  PubMed  CAS  Google Scholar 

  • Dey, N., Wagner, V. E., Blanton, L. V., Cheng, J., Fontana, L., Haque, R., et al. (2015). Regulators of gut motility revealed by a gnotobiotic model of diet-microbiome interactions related to travel. Cell, 163, 95–107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diaz Heijtz, R., Wang, S., Anuar, F., Qian, Y., Björkholm, B., Samuelsson, A., et al. (2011). Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences of the United States of America, 108, 3047–3052.

    Article  PubMed  Google Scholar 

  • Dickerson, F. B., Stallings, C., Origoni, A., Katsafanas, E., Savage, C. L., Schweinfurth, L. A., et al. (2014). Effect of probiotic supplementation on schizophrenia symptoms and association with gastrointestinal functioning: A randomized, placebo-controlled trial. The Primary Care Companion for CNS Disorders, 16.

    Google Scholar 

  • Erny, D., Hrabě de Angelis, A. L., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., et al. (2015). Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience, 18, 965–977.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferraro, A., & Kilman, J. (1933). Experimental toxic approach to mental illness. Psychiatric Quarterly, 7, 115–153.

    Article  Google Scholar 

  • Fröhlich, E. E., Farzi, A., Mayerhofer, R., Reichmann, F., Jačan, A., Wagner, B., et al. (2016). Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication. Brain, Behavior, and Immunity, 56, 140–155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fung, T. C., Olson, C. A., & Hsiao, E. Y. (2017). Interactions between the microbiota, immune and nervous systems in health and disease. Nature Neuroscience, 20, 145–155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Furness, J. B., Callaghan, B. P., Rivera, L. R., & Cho, H. J. (2014). The enteric nervous system and gastrointestinal innervation: Integrated local and central control. Advances in Experimental Medicine and Biology, 817, 39–71.

    Article  PubMed  Google Scholar 

  • Golubeva, A. V., Joyce, S. A., Moloney, G., Burokas, A., Sherwin, E., Arboleya, S., et al. (2017). Microbiota-related changes in bile acid and tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. eBioMedicine, 24, 166–178.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodrich, J. K., Davenport, E. R., Clark, A. G., & Ley, R. E. (2017). The relationship between the human genome and microbiome comes into view. Annual Review of Genetics, 51, 413–433.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamodeh, S. A., Rehn, M., Haschke, G., & Diener, M. (2004). Mechanism of butyrate-induced hyperpolarization of cultured rat myenteric neurones. Neurogastroenterology and Motility, 16, 597–604.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa, S., Goto, S., Tsuji, H., Okuno, T., Asahara, T., Nomoto, K., et al. (2015). Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease. PLoS One, 10, e0142164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heintz-Buschart, A., Pandey, U., Wicke, T., Sixel-Döring, F., Janzen, A., Sittig-Wiegand, E., et al. (2018). The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Movement Disorders, 33(1), 88–98.

    Article  PubMed  CAS  Google Scholar 

  • Hill-Burns, E. M., Debelius, J. W., Morton, J. T., Wissemann, W. T., Lewis, M. R., Wallen, Z. D., et al. (2017). Parkinson’s disease and Parkinson's disease medications have distinct signatures of the gut microbiome. Movement Disorders, 32, 739–749.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoban, A. E., Stilling, R. M., Ryan, F. J., Shanahan, F., Dinan, T. G., Claesson, M. J., et al. (2016). Regulation of prefrontal cortex myelination by the microbiota. Translational Psychiatry, 6, e774.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hopfner, F., Künstner, A., Müller, S. H., Künzel, S., Zeuner, K. E., Margraf, N. G., et al. (2017). Gut microbiota in Parkinson disease in a northern German cohort. Brain Research, 1667, 41–45.

    Article  PubMed  CAS  Google Scholar 

  • Hornykiewicz, O. (2002). Dopamine miracle: From brain homogenate to dopamine replacement. Movement Disorders, 17, 501–508.

    Article  PubMed  Google Scholar 

  • Hsiao, E. Y., McBride, S. W., Hsien, S., Sharon, G., Hyde, E. R., McCue, T., et al. (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155, 1451–1463.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Imhann, F., Vich Vila, A., Bonder, M. J., Fu, J., Gevers, D., Visschedijk, M. C., et al. (2016). Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut, 67(1), 108–119.

    Article  PubMed  Google Scholar 

  • Ingelsson, M. (2016). Alpha-synuclein oligomers-neurotoxic molecules in Parkinson’s disease and other lewy body disorders. Frontiers in Neuroscience, 10, 408.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jangi, S., Gandhi, R., Cox, L. M., Li, N., von Glehn, F., Yan, R., et al. (2016). Alterations of the human gut microbiome in multiple sclerosis. Nature Communications, 7, 12015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang, H., Ling, Z., Zhang, Y., Mao, H., Ma, Z., Yin, Y., et al. (2015). Altered fecal microbiota composition in patients with major depressive disorder. Brain, Behavior, and Immunity, 48, 186–194.

    Article  PubMed  Google Scholar 

  • Kabouridis, P. S., Lasrado, R., McCallum, S., Chng, S. H., Snippert, H. J., Clevers, H., et al. (2015). Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron, 85, 289–295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamiya, T., Wang, L., Forsythe, P., Goettsche, G., Mao, Y., Wang, Y., et al. (2006). Inhibitory effects of Lactobacillus reuteri on visceral pain induced by colorectal distension in Sprague-Dawley rats. Gut, 55, 191–196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang, D. W., Park, J. G., Ilhan, Z. E., Wallstrom, G., Labaer, J., Adams, J. B., et al. (2013). Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One, 8, e68322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang, D. W., Adams, J. B., Gregory, A. C., Borody, T., Chittick, L., Fasano, A., et al. (2017). Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome, 5, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelly, J. R., Borre, Y., O’Brien, C., Patterson, E., El Aidy, S., Deane, J., et al. (2016). Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. Journal of Psychiatric Research, 82, 109–118.

    Article  PubMed  Google Scholar 

  • Kelly, J. R., Minuto, C., Cryan, J. F., Clarke, G., & Dinan, T. G. (2017). Cross talk: The microbiota and neurodevelopmental disorders. Frontiers in Neuroscience, 11, 490.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimura, I., Inoue, D., Maeda, T., Hara, T., Ichimura, A., Miyauchi, S., et al. (2011). Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proceedings of the National Academy of Sciences of the United States of America, 108, 8030–8035.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lasselin, J., Elsenbruch, S., Lekander, M., Axelsson, J., Karshikoff, B., Grigoleit, J. S., et al. (2016). Mood disturbance during experimental endotoxemia: Predictors of state anxiety as a psychological component of sickness behavior. Brain, Behavior, and Immunity, 57, 30–37.

    Article  PubMed  Google Scholar 

  • Lee, Y. K., Menezes, J. S., Umesaki, Y., & Mazmanian, S. K. (2011). Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl 1), 4615–4622.

    Article  PubMed  Google Scholar 

  • Lord, C., Cook, E. H., Leventhal, B. L., & Amaral, D. G. (2000). Autism spectrum disorders. Neuron, 28, 355–363.

    Article  PubMed  CAS  Google Scholar 

  • Luczynski, P., Whelan, S. O., O’Sullivan, C., Clarke, G., Shanahan, F., Dinan, T. G., et al. (2016). Adult microbiota-deficient mice have distinct dendritic morphological changes: Differential effects in the amygdala and hippocampus. The European Journal of Neuroscience, 44, 2654–2666.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luczynski, P., Tramullas, M., Viola, M., Shanahan, F., Clarke, G., O’Mahony, S., et al. (2017). Microbiota regulates visceral pain in the mouse. eLife, 6, e25887.

    Article  PubMed  PubMed Central  Google Scholar 

  • Macrez, R., Ali, C., Toutirais, O., Le Mauff, B., Defer, G., Dirnagl, U., et al. (2011). Stroke and the immune system: From pathophysiology to new therapeutic strategies. Lancet Neurology, 10, 471–480.

    Article  PubMed  CAS  Google Scholar 

  • Mangalam, A., Shahi, S. K., Luckey, D., Karau, M., Marietta, E., Luo, N., et al. (2017). Human gut-derived commensal bacteria suppress CNS inflammatory and demyelinating disease. Cell Reports, 20, 1269–1277.

    Article  PubMed  CAS  Google Scholar 

  • McVey Neufeld, K. A., Mao, Y. K., Bienenstock, J., Foster, J. A., & Kunze, W. A. (2013). The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterology and Motility, 25, 183–e188.

    Article  PubMed  CAS  Google Scholar 

  • Meyza, K. Z., & Blanchard, D. C. (2017). The BTBR mouse model of idiopathic autism – Current view on mechanisms. Neuroscience and Biobehavioral Reviews, 76, 99–110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Möhle, L., Mattei, D., Heimesaat, M. M., Bereswill, S., Fischer, A., Alutis, M., et al. (2016). Ly6C(hi) monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Reports, 15, 1945–1956.

    Article  PubMed  CAS  Google Scholar 

  • Muller, P. A., Koscsó, B., Rajani, G. M., Stevanovic, K., Berres, M. L., Hashimoto, D., et al. (2014). Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell, 158, 300–313.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagashima, K., Sawa, S., Nitta, T., Tsutsumi, M., Okamura, T., Penninger, J. M., et al. (2017). Identification of subepithelial mesenchymal cells that induce IgA and diversify gut microbiota. Nature Immunology, 18, 675–682.

    Article  PubMed  CAS  Google Scholar 

  • Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium. (2015). Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nature Neuroscience, 18, 199–209.

    Article  CAS  Google Scholar 

  • Neufeld, K. M., Kang, N., Bienenstock, J., & Foster, J. A. (2011). Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterology and Motility, 23, 255–264, e119.

    Article  PubMed  CAS  Google Scholar 

  • Nøhr, M. K., Egerod, K. L., Christiansen, S. H., Gille, A., Offermanns, S., Schwartz, T. W., et al. (2015). Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia. Neuroscience, 290, 126–137.

    Article  PubMed  CAS  Google Scholar 

  • Ogbonnaya, E. S., Clarke, G., Shanahan, F., Dinan, T. G., Cryan, J. F., & O’Leary, O. F. (2015). Adult hippocampal neurogenesis is regulated by the microbiome. Biological Psychiatry, 78, e7–e9.

    Article  PubMed  Google Scholar 

  • Olde Loohuis, L. M. (2018). Transcriptome analysis in whole blood reveals increased microbial diversity in schizophrenia. Translational Psychiatry, 8, 96. https://doi.org/10.1038/s41398-018-0107-9

  • Ota, K., Matsui, M., Milford, E. L., Mackin, G. A., Weiner, H. L., & Hafler, D. A. (1990). T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature, 346, 183–187.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Burgos, A., Wang, B., Mao, Y. K., Mistry, B., McVey Neufeld, K. A., Bienenstock, J., et al. (2013). Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents. American Journal of Physiology. Gastrointestinal and Liver Physiology, 304, G211–G220.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Burgos, A., Wang, L., McVey Neufeld, K. A., Mao, Y. K., Ahmadzai, M., Janssen, L. J., et al. (2015). The TRPV1 channel in rodents is a major target for antinociceptive effect of the probiotic Lactobacillus reuteri DSM 17938. The Journal of Physiology, 593, 3943–3957.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perry, R. J., Peng, L., Barry, N. A., Cline, G. W., Zhang, D., Cardone, R. L., et al. (2016). Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature, 534, 213–217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pinto-Sanchez, M. I., Hall, G. B., Ghajar, K., Nardelli, A., Bolino, C., Lau, J. T., et al. (2017). Probiotic bifidobacterium longum NCC3001 reduces depression scores and alters brain activity: A pilot study in patients with irritable bowel syndrome. Gastroenterology, 153, 448–459.e448.

    Article  PubMed  Google Scholar 

  • Reigstad, C. S., Salmonson, C. E., Rainey, J. F., Szurszewski, J. H., Linden, D. R., Sonnenburg, J. L., et al. (2015). Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. The FASEB Journal, 29, 1395–1403.

    Article  PubMed  CAS  Google Scholar 

  • Rios, D., Wood, M. B., Li, J., Chassaing, B., Gewirtz, A. T., & Williams, I. R. (2016). Antigen sampling by intestinal M cells is the principal pathway initiating mucosal IgA production to commensal enteric bacteria. Mucosal Immunology, 9, 907–916.

    Article  PubMed  CAS  Google Scholar 

  • Rolig, A. S., Mittge, E. K., Ganz, J., Troll, J. V., Melancon, E., Wiles, T. J., et al. (2017). The enteric nervous system promotes intestinal health by constraining microbiota composition. PLoS Biology, 15, e2000689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosshart, S. P., Vassallo, B. G., Angeletti, D., Hutchinson, D. S., Morgan, A. P., Takeda, K., et al. (2017). Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell, 171, 1015.e13–1028.e13.

    Article  CAS  Google Scholar 

  • Sampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E., et al. (2016). Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 167, 1469–1480.e1412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sandler, R. H., Finegold, S. M., Bolte, E. R., Buchanan, C. P., Maxwell, A. P., & Väisänen, M. L. (2000). Short-term benefit from oral vancomycin treatment of regressive-onset autism. Journal of Child Neurology, 15, 429–435.

    Article  PubMed  CAS  Google Scholar 

  • Scheperjans, F., Aho, V., Pereira, P. A., Koskinen, K., Paulin, L., Pekkonen, E., et al. (2015). Gut microbiota are related to Parkinson’s disease and clinical phenotype. Movement Disorders, 30, 350–358.

    Article  PubMed  Google Scholar 

  • Schroeder, B. O., & Bäckhed, F. (2016). Signals from the gut microbiota to distant organs in physiology and disease. Nature Medicine, 22, 1079–1089.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz, E., Maukonen, J., Hyytiäinen, T., Kieseppä, T., Orešič, M., Sabunciyan, S., et al. (2018). Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response. Schizophrenia Research, 192, 398–403.

    Article  PubMed  Google Scholar 

  • Shah, E., Rezaie, A., Riddle, M., & Pimentel, M. (2014). Psychological disorders in gastrointestinal disease: Epiphenomenon, cause or consequence? Annals of Gastroenterology, 27, 224–230.

    PubMed  PubMed Central  Google Scholar 

  • Shahi, S. K., Freedman, S. N., & Mangalam, A. K. (2017). Gut microbiome in multiple sclerosis: The players involved and the roles they play. Gut Microbes, 6, 1–9.

    Google Scholar 

  • Singh, V., Roth, S., Llovera, G., Sadler, R., Garzetti, D., Stecher, B., et al. (2016). Microbiota dysbiosis controls the neuroinflammatory response after stroke. The Journal of Neuroscience, 36, 7428–7440.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slykerman, R. F., Thompson, J., Waldie, K. E., Murphy, R., Wall, C., & Mitchell, E. A. (2017). Antibiotics in the first year of life and subsequent neurocognitive outcomes. Acta Paediatrica, 106, 87–94.

    Article  PubMed  Google Scholar 

  • Son, J. S., Zheng, L. J., Rowehl, L. M., Tian, X., Zhang, Y., Zhu, W., et al. (2015). Comparison of fecal microbiota in children with autism spectrum disorders and neurotypical siblings in the simons simplex collection. PLoS One, 10, e0137725.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stevens, B. R., Goel, R., Seungbum, K., Richards, E. M., Holbert, R. C., Pepine, C. J., et al. (2017). Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression. Gut. in press, https://doi.org/10.1136/gutjnl-2017-314759

  • Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X. N., et al. (2004). Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. The Journal of Physiology, 558, 263–275.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sutterland, A. L., Fond, G., Kuin, A., Koeter, M. W., Lutter, R., van Gool, T., et al. (2015). Beyond the association. Toxoplasma gondii in schizophrenia, bipolar disorder, and addiction: Systematic review and meta-analysis. Acta Psychiatrica Scandinavica, 132, 161–179.

    Article  PubMed  CAS  Google Scholar 

  • Tan, A. H., Chong, C. W., Song, S. L., Teh, C. S. J., Yap, I. K. S., Loke, M. F., et al. (2018). Altered gut microbiome and metabolome in patients with multiple system atrophy. Movement Disorders, 33(1), 174–176.

    Article  PubMed  Google Scholar 

  • Thaiss, C. A., Zeevi, D., Levy, M., Zilberman-Schapira, G., Suez, J., Tengeler, A. C., et al. (2014). Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell, 159, 514–529.

    Article  CAS  PubMed  Google Scholar 

  • Tillisch, K., Labus, J., Kilpatrick, L., Jiang, Z., Stains, J., Ebrat, B., et al. (2013). Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology, 144, 1394–1401 1401.e1391–1394.

    Article  PubMed  CAS  Google Scholar 

  • Tomova, A., Husarova, V., Lakatosova, S., Bakos, J., Vlkova, B., Babinska, K., et al. (2015). Gastrointestinal microbiota in children with autism in Slovakia. Physiology and Behavior, 138, 179–187.

    Article  PubMed  CAS  Google Scholar 

  • Vyas, A. (2015). Mechanisms of host behavioral change in Toxoplasma gondii rodent association. PLoS Pathogens, 11, e1004935.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williams, B. L., Hornig, M., Buie, T., Bauman, M. L., Cho Paik, M., Wick, I., et al. (2011). Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One, 6, e24585.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williams, B. L., Hornig, M., Parekh, T., & Lipkin, W. I. (2012). Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. MBio, 3, e00261–e00211.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Winek, K., Engel, O., Koduah, P., Heimesaat, M. M., Fischer, A., Bereswill, S., et al. (2016). Depletion of cultivatable gut microbiota by broad-spectrum antibiotic pretreatment worsens outcome after murine stroke. Stroke, 47, 1354–1363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yano, J. M., Yu, K., Donaldson, G. P., Shastri, G. G., Ann, P., Ma, L., et al. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 161, 264–276.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoo, B. B., & Mazmanian, S. K. (2017). The enteric network: Interactions between the immune and nervous systems of the gut. Immunity, 46, 910–926.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng, P., Zeng, B., Zhou, C., Liu, M., Fang, Z., Xu, X., et al. (2016). Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Molecular Psychiatry, 21, 786–796.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Slingerland, A.E., Stein-Thoeringer, C.K. (2018). Microbiome and Diseases: Neurological Disorders. In: Haller, D. (eds) The Gut Microbiome in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-90545-7_18

Download citation

Publish with us

Policies and ethics