Abstract
An investigation of the deviations of error and correlation for different stages of the multi-stage genetic programming (MSGP) algorithm in multivariate nonlinear problems is presented. The MSGP algorithm consists of two main stages: (1) incorporating the individual effect of the predictor variables, (2) incorporating the interactions among the predictor variables. The MSGP algorithm formulates these two terms in an efficient procedure to optimize the error among the predicted and the actual values. In addition to this, the proposed pipeline of the MSGP algorithm is implemented with a combination of parallel processing algorithms to run multiple jobs at the same time. To demonstrate the capabilities of the MSGP, its performance is compared with standard GP in modeling a regression problem. The results illustrate that the MSGP algorithm outperforms standard GP in terms of accuracy, efficiency, and computational cost.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brameier, M.F., Banzhaf, W.: Linear genetic programming. Springer Science & Business Media (2007)
Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J., Joly, A., Holt, B., Varoquaux, G.: API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–122 (2013)
Fan, J., Han, F., Liu, H.: Challenges of big data analysis. National Science Review 1(2), 293–314 (2014)
Gandomi, A.H., Alavi, A.H.: Multi-stage genetic programming: a new strategy to nonlinear system modeling. Information Sciences 181(23), 5227–5239 (2011)
Gandomi, A.H., Alavi, A.H.: A new multi-gene genetic programming approach to non-linear system modeling. part II: geotechnical and earthquake engineering problems. Neural Computing and Applications 21(1), 189–201 (2012)
Gandomi, A.H., Alavi, A.H.: A new multi-gene genetic programming approach to nonlinear system modeling. part I: materials and structural engineering problems. Neural Computing and Applications 21(1), 171–187 (2012)
Gandomi, A.H., Alavi, A.H., Mirzahosseini, M.R., Nejad, F.M.: Nonlinear genetic-based models for prediction of flow number of asphalt mixtures. Journal of Materials in Civil Engineering 23(3), 248–263 (2010)
Gandomi, A.H., Roke, D.A.: Assessment of artificial neural network and genetic programming as predictive tools. Advances in Engineering Software 88, 63–72 (2015)
Gandomi, A.H., Sajedi, S., Kiani, B., Huang, Q.: Genetic programming for experimental big data mining: A case study on concrete creep formulation. Automation in Construction 70, 89–97 (2016)
Garzón-Roca, J., Marco, C.O., Adam, J.M.: Compressive strength of masonry made of clay bricks and cement mortar: Estimation based on neural networks and fuzzy logic. Engineering Structures 48, 21–27 (2013)
Iba, H., deGaris, H., Sato, T.: A numerical approach to genetic programming for system identification. Evolutionary Computation 3(4), 417–452 (1995).
Koza, J.R.: Genetic programming: on the programming of computers by means of natural selection, vol. 1. MIT Press (1992)
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)
Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R.: A field guide to genetic programming. Lulu. com (2008)
Ryan, C., Collins, J., Neill, M.: Grammatical evolution: Evolving programs for an arbitrary language. In: European Conference on Genetic Programming, Paris 1998, pp. 83–96 (1998) Springer, Berlin (1998)
Schadt, E.E., Linderman, M.D., Sorenson, J., Lee, L., Nolan, G.P.: Cloud and heterogeneous computing solutions exist today for the emerging big data problems in biology. Nature Reviews Genetics 12(3), 224–224 (2011)
Smith, G.N.: Probability and statistics in civil engineering. Collins Professional and Technical Books 244 (1986)
Tahmassebi, A., Gandomi, A.H.: Building energy consumption forecast using multi-objective genetic programming. Measurement 118, 164–171 (2018)
Tahmassebi, A., Gandomi, A.H., McCann, I., Schulte, M.H., Schmaal, L., Goudriaan, A.E., Meyer-Bäse, A.: An evolutionary approach for fMRI big data classification. In: 2017 IEEE Congress on Evolutionary Computation (CEC) pp. 1029–1036 (2017)
Tahmassebi, A., Gandomi, A.H., Meyer-Bäse, A.: High performance GP-based approach for fMRI big data classification. In: Proceedings of the Practice and Experience in Advanced Research Computing 2017 on Sustainability, Success and Impact, PEARC17, pp. 57:157:4. ACM Press, New York, NY, USA (2017)
Wu, X., Zhu, X., Wu, G.Q., Ding, W.: Data mining with big data. IEEE transactions on knowledge and data engineering 26(1), 97–107 (2014)
Zhang, B.T., Mühlenbein, H.: Balancing accuracy and parsimony in genetic programming. Evolutionary Computation 3(1), 17–38 (1995)
Acknowledgements
This material is based in part upon work supported by the National Science Foundation under Cooperative Agreement No. DBI-0939454. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. For valuable help in the revision of the chapter we also would like to thank Eitan Lees for critical and helpful comments on final draft.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Tahmassebi, A., Gandomi, A.H. (2018). Genetic Programming Based on Error Decomposition: A Big Data Approach. In: Banzhaf, W., Olson, R., Tozier, W., Riolo, R. (eds) Genetic Programming Theory and Practice XV. Genetic and Evolutionary Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-90512-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-90512-9_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-90511-2
Online ISBN: 978-3-319-90512-9
eBook Packages: Computer ScienceComputer Science (R0)