Advertisement

A System for Accessible Artificial Intelligence

  • Randal S. Olson
  • Moshe Sipper
  • William La Cava
  • Sharon Tartarone
  • Steven Vitale
  • Weixuan Fu
  • Patryk Orzechowski
  • Ryan J. Urbanowicz
  • John H. Holmes
  • Jason H. Moore
Conference paper
Part of the Genetic and Evolutionary Computation book series (GEVO)

Abstract

While artificial intelligence (AI) has become widespread, many commercial AI systems are not yet accessible to individual researchers nor the general public due to the deep knowledge of the systems required to use them. We believe that AI has matured to the point where it should be an accessible technology for everyone. We present an ongoing project whose ultimate goal is to deliver an open source, user-friendly AI system that is specialized for machine learning analysis of complex data in the biomedical and health care domains. We discuss how genetic programming can aid in this endeavor, and highlight specific examples where genetic programming has automated machine learning analyses in previous projects.

Notes

Acknowledgements

This work was generously funded by the Perelman School of Medicine and the University of Pennsylvania Health System. Additional funding was provided by National Institutes of Health grants AI116794, DK112217, ES013508, and TR001878.

References

  1. 1.
    Arnaldo, I., Veeramachaneni, K., Song, A., O’Reilly, U.M.: Bring your own learner: A cloud-based, data-parallel commons for machine learning. IEEE Computational Intelligence Magazine 10(1), 20–32 (2015)CrossRefGoogle Scholar
  2. 2.
    Bruce, G., Buchanan, B., Shortliffe, E.: Rule-based expert systems: The MYCIN experiments of the Stanford heuristic programming project (1984)Google Scholar
  3. 3.
    Chodorow, K., Dirolf, M.: MongoDB: The Definitive Guide, 1st edn. O’Reilly Media, Inc. (2010)Google Scholar
  4. 4.
    Demšar, J., Curk, T., Erjavec, A., Črt Gorup, Hočevar, T., Milutinovič, M., Možina, M., Polajnar, M., Toplak, M., Starič, A., Štajdohar, M., Umek, L., Žagar, L., Žbontar, J., Žitnik, M., Zupan, B.: Orange: Data mining toolbox in Python. Journal of Machine Learning Research 14, 2349–2353 (2013)Google Scholar
  5. 5.
    Ferrucci, D.A.: Introduction to “This is Watson”. IBM Journal of Research and Development 56(3.4), 1–1 (2012)CrossRefGoogle Scholar
  6. 6.
    Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT Press (2016)Google Scholar
  7. 7.
    Hastie, T.J., Tibshirani, R.J., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York, NY, USA (2009)Google Scholar
  8. 8.
    Kalousis, A.: Algorithm selection via meta-learning. Ph.D. thesis, Universite de Geneve (2002)Google Scholar
  9. 9.
    Kannappan, K., Spector, L., Sipper, M., Helmuth, T., La Cava, W., Wisdom, J., Bernstein, O.: Analyzing a decade of human-competitive (“HUMIE”) winners: What can we learn? In: Genetic Programming Theory and Practice XII, pp. 149–166. Springer International Publishing (2015)Google Scholar
  10. 10.
    Koza, J.R.: Genetic programming: on the programming of computers by means of natural selection, vol. 1. MIT Press (1992)Google Scholar
  11. 11.
    La Cava, W., Danai, K., Spector, L.: Inference of compact nonlinear dynamic models by epigenetic local search. Engineering Applications of Artificial Intelligence 55, 292–306 (2016)CrossRefGoogle Scholar
  12. 12.
    La Cava, W., Danai, K., Spector, L., Fleming, P., Wright, A., Lackner, M.: Automatic identification of wind turbine models using evolutionary multiobjective optimization. Renewable Energy 87, 892–902 (2016)CrossRefGoogle Scholar
  13. 13.
    La Cava, W., Moore, J.: A general feature engineering wrapper for machine learning using 𝜖-lexicase survival. In: European Conference on Genetic Programming, pp. 80–95. Springer (2017)Google Scholar
  14. 14.
    La Cava, W., Moore, J.H.: Ensemble representation learning: an analysis of fitness and survival for wrapper-based genetic programming methods. In: GECCO ‘17: Proceedings of the Conference on Genetic and Evolutionary Computation. ACM (2017)Google Scholar
  15. 15.
    La Cava, W., Silva, S., Vanneschi, L., Spector, L., Moore, J.: Genetic programming representations for multi-dimensional feature learning in biomedical classification. In: European Conference on the Applications of Evolutionary Computation, pp. 158–173. Springer (2017)Google Scholar
  16. 16.
    Langley, P.: Lessons for the Computational Discovery of Scientific Knowledge (2002)Google Scholar
  17. 17.
    Moore, J.H., Andrews, P.C., Barney, N., White, B.C.: Development and evaluation of an open-ended computational evolution system for the genetic analysis of susceptibility to common human diseases. In: European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, pp. 129–140. Springer (2008)Google Scholar
  18. 18.
    Moore, J.H., Greene, C.S., Hill, D.P.: Identification of novel genetic models of glaucoma using the “emergent” genetic programming-based artificial intelligence system. In: R. Riolo, W.P. Worzel, M. Kotanchek (eds.) Genetic Programming Theory and Practice XII, pp. 17–35. Springer International Publishing, Cham (2015)CrossRefGoogle Scholar
  19. 19.
    Moore, J.H., Greene, C.S., Hill, D.P.: Identification of novel genetic models of glaucoma using the “emergent” genetic programming-based artificial intelligence system. In: Genetic Programming Theory and Practice XII, pp. 17–35. Springer (2015)Google Scholar
  20. 20.
    Moore, J.H., Hill, D.P., Fisher, J.M., Lavender, N., Kidd, L.C.: Human-computer interaction in a computational evolution system for the genetic analysis of cancer. In: R. Riolo, E. Vladislavleva, J.H. Moore (eds.) Genetic Programming Theory and Practice IX, pp. 153–171. Springer New York, New York, NY (2011)CrossRefGoogle Scholar
  21. 21.
    Moore, J.H., Hill, D.P., Saykin, A., Shen, L.: Exploring interestingness in a computational evolution system for the genome-wide genetic analysis of alzheimer’s disease. In: R. Riolo, J.H. Moore, M. Kotanchek (eds.) Genetic Programming Theory and Practice XI, pp. 31–45. Springer New York, New York, NY (2014)CrossRefGoogle Scholar
  22. 22.
    Moore, J.H., White, B.C.: Genome-wide genetic analysis using genetic programming: The critical need for expert knowledge. In: Genetic Programming Theory and Practice IV, pp. 11–28. Springer (2007)Google Scholar
  23. 23.
    Olson, R.S., Bartley, N., Urbanowicz, R.J., Moore, J.H.: Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science. In: GECCO 2016, GECCO ‘16, pp. 485–492. ACM, New York, NY, USA (2016)Google Scholar
  24. 24.
    Olson, R.S., La Cava, W., Orzeshowski, P., Urbanowicz Ryan J Moore, J.H.: PMLB: A large benchmark suite for machine learning evaluation and comparison. arXiv e-print. https://arxiv.org/abs/1703.00512 (2017)
  25. 25.
    Olson, R.S., Moore, J.H.: Identifying and Harnessing the Building Blocks of Machine Learning Pipelines for Sensible Initialization of a Data Science Automation Tool. arXiv e-print. http://arxiv.org/abs/1607.08878 (2016)
  26. 26.
    Olson, R.S., Moore, J.H.: TPOT: A Tree-based Pipeline Optimization Tool for Automating Machine Learning. JMLR 64, 66–74 (2016)Google Scholar
  27. 27.
    Olson, R.S., Urbanowicz, R.J., Andrews, P.C., Lavender, N.A., Kidd, L.C., Moore, J.H.: Automating Biomedical Data Science Through Tree-Based Pipeline Optimization. In: G. Squillero, P. Burelli (eds.) Applications of Evolutionary Computation: 19th European Conference, EvoApplications 2016, Porto, Portugal, March 30–April 1, 2016, Proceedings, Part I, pp. 123–137. Springer International Publishing (2016)CrossRefGoogle Scholar
  28. 28.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Ronald, E.M., Sipper, M., Capcarrère, M.S.: Design, observation, surprise! A test of emergence. Artificial Life 5(3), 225–239 (1999)CrossRefGoogle Scholar
  30. 30.
    de Sá, A.G., Pinto, W.J.G., Oliveira, L.O.V., Pappa, G.L.: RECIPE: A Grammar-Based Framework for Automatically Evolving Classification Pipelines. In: European Conference on Genetic Programming, pp. 246–261. Springer (2017)Google Scholar
  31. 31.
    Silva, S., Muñoz, L., Trujillo, L., Ingalalli, V., Castelli, M., Vanneschi, L.: Multiclass classification through multidimensional clustering. In: Genetic Programming Theory and Practice XIII, pp. 219–239. Springer (2016)CrossRefGoogle Scholar
  32. 32.
    Sipper, M., Fu, W., Ahuja, K., Moore, J.H.: Investigating the parameter space of evolutionary algorithms (2017). arXiv:1706.04119Google Scholar
  33. 33.
    Sohn, A., Olson, R.S., Moore, J.H.: Toward the automated analysis of complex diseases in genome-wide association studies using genetic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ‘17, pp. 489–496. ACM, New York, NY, USA (2017)Google Scholar
  34. 34.
    Vanneschi, L., Archetti, F., Castelli, M., Giordani, I.: Classification of oncologic data with genetic programming. Journal of Artificial Evolution and Applications p. 6 (2009)Google Scholar
  35. 35.
    Zutty, J., Long, D., Adams, H., Bennett, G., Baxter, C.: Multiple objective vector-based genetic programming using human-derived primitives. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1127–1134. ACM (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Randal S. Olson
    • 1
  • Moshe Sipper
    • 2
    • 3
  • William La Cava
    • 1
  • Sharon Tartarone
    • 1
  • Steven Vitale
    • 1
  • Weixuan Fu
    • 1
  • Patryk Orzechowski
    • 4
    • 5
  • Ryan J. Urbanowicz
    • 1
  • John H. Holmes
    • 1
  • Jason H. Moore
    • 1
  1. 1.Institute for Biomedical InformaticsUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Institute for Biomedical InformaticsUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Computer ScienceBen-Gurion UniversityBeer-ShevaIsrael
  4. 4.Institute for Biomedical InformaticsUniversity of PennsylvaniaPhiladelphiaUSA
  5. 5.Department of Automatics and Biomedical EngineeringAGH University of Science and TechnologyKrakowPoland

Personalised recommendations