Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications. Numerical Insights. CRC Press, Singapore (2009)
CrossRef
Google Scholar
Altenberg, L., et al.: The evolution of evolvability in genetic programming. Advances in genetic programming 3, 47–74 (1994)
Google Scholar
Banzhaf, W.: Genetic programming and emergence. Genetic Programming and Evolvable Machines 15(1), 63–73 (2014). https://doi.org/10.1007/s10710-013-9196-7
CrossRef
Google Scholar
Banzhaf, W., Leier, A.: Evolution on neutral networks in genetic programming. In: Genetic programming theory and practice III, pp. 207–221. Springer (2006)
Google Scholar
Burke, E., Gustafson, S., Kendall, G.: A survey and analysis of diversity measures in genetic programming. In: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, pp. 716–723. Morgan Kaufmann Publishers Inc. (2002)
Google Scholar
Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: An analysis of measures and correlation with fitness. IEEE Transactions on Evolutionary Computation 8(1), 47–62 (2004)
CrossRef
Google Scholar
Götz, M., Koch, C., Martens, W.: Efficient algorithms for descendant-only tree pattern queries. Inf. Syst. 34(7), 602–623 (2009). https://doi.org/10.1016/j.is.2009.03.010
CrossRef
Google Scholar
Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press (1975)
Google Scholar
Hu, T., Banzhaf, W., Moore, J.H.: Population Exploration on Genotype Networks in Genetic Programming. In: Proceedings of the 13th International Conference on Parallel Problem Solving from Nature – PPSN XIII, 2014, pp. 424–433. Springer International Publishing, Cham (2014)
Google Scholar
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA (1992)
MATH
Google Scholar
Krawiec, K., Wieloch, B.: Functional modularity for genetic programming. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, GECCO ’09, pp. 995–1002. ACM, New York, NY, USA (2009). http://doi.acm.org/10.1145/1569901.1570037
Poli, R.: Hyperschema theory for gp with one-point crossover, building blocks, and some new results in ga theory. In: Genetic Programming, Proceedings of EuroGP 2000, pp. 15–16. Springer-Verlag (2000)
Google Scholar
Poli, R.: Exact schema theory for genetic programming and variable-length genetic algorithms with one-point crossover. Genetic Programming and Evolvable Machines 2(2), 123–163 (2001). https://doi.org/10.1023/A:1011552313821
CrossRef
Google Scholar
Poli, R.: A simple but theoretically-motivated method to control bloat in genetic programming. In: Proceedings of the 6th European Conference on Genetic Programming, EuroGP’03, pp. 204–217. Springer-Verlag, Berlin, Heidelberg (2003). http://dl.acm.org/citation.cfm?id=1762668.1762688
MATH
Google Scholar
Poli, R., Langdon, W.B., Dignum, S.: Generalisation of the limiting distribution of program sizes in tree-based genetic programming and analysis of its effects on bloat. In: in GECCO 2007: Proceedings of the 9th Annual Conference on Genetic and Evolutionary, pp. 1588–1595. ACM Press (2007)
Google Scholar
Poli, R., McPhee, N.F.: General schema theory for genetic programming with subtree-swapping crossover: Part I. Evolutionary Computation 11(1), 53–66 (2003).
CrossRef
Google Scholar
Poli, R., McPhee, N.F.: General schema theory for genetic programming with subtree-swapping crossover: Part II. Evolutionary Computation 11(2), 169–206 (2003). https://doi.org/10.1162/106365603766646825
CrossRef
Google Scholar
Poli, R., McPhee, N.F.: Covariant parsimony pressure for genetic programming. In: GECCO 2008: Proceedings of the 10th annual conference on Genetic and Evolutionary Computation, pp. 1267–1274. ACM Press (2008)
Google Scholar
Poli, R., Vanneschi, L., Langdon, W.B., McPhee, N.F.: Theoretical results in genetic programming: The next ten years? Genetic Programming and Evolvable Machines 11(3–4), 285–320 (2010). http://dx.doi.org/10.1007/s10710-010-9110-5
CrossRef
Google Scholar
Stephens, C.R., Waelbroeck, H.: Effective degrees of freedom in genetic algorithms. Physical Review E 57(3), 3251–3264 (1998)
CrossRef
Google Scholar
Vladislavleva, E.J., Smits, G.F., Den Hertog, D.: Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic programming. Evolutionary Computation, IEEE Transactions on 13(2), 333–349 (2009)
CrossRef
Google Scholar
Wagner, G.P., Altenberg, L.: Perspective: complex adaptations and the evolution of evolvability. Evolution 50, 967–976 (1996)
CrossRef
Google Scholar
Wagner, S., Kronberger, G., Beham, A., Kommenda, M., Scheibenpflug, A., Pitzer, E., Vonolfen, S., Kofler, M., Winkler, S.M., Dorfer, V., Affenzeller, M.: Architecture and design of the heuristiclab optimization environment. Advanced Methods and Applications in Computational Intelligence, Topics in Intelligent Engineering and Informatics 6, 197–261 (2013)
CrossRef
Google Scholar
White, D.: An overview of schema theory. Computing Research Repository CoRR abs/1401.2651 (2014). http://arxiv.org/abs/1401.2651
Woodward, J.R.: Modularity in Genetic Programming. Proc. of Genetic Programming: 6th European Conference, EuroGP 2003 Essex, pp. 254–263. Springer (2003). http://dx.doi.org/10.1007/3-540-36599-0_23
Google Scholar