Advertisement

State Estimation in Networked Control Systems with Delayed and Lossy Acknowledgments

  • Florian Rosenthal
  • Benjamin Noack
  • Uwe D. Hanebeck
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 501)

Abstract

In this article, we are concerned with state estimation in Networked Control Systems where both control inputs and measurements are transmitted over networks which are lossy and introduce random transmission delays. We focus on the case where acknowledgment packets transmitted by the actuator upon reception of applicable control inputs are also subject to delays and losses, as opposed to the common notion of TCP-like communication where successful transmissions are acknowledged instantaneously and without losses. As a consequence, the state estimator in the considered setup has only partial and belated knowledge concerning the actually applied control inputs which results in additional uncertainty. We derive an estimator by extending an existing approach for the special case of UDP-like communication which maintains estimates of the applied control inputs that are incorporated into the estimation of the plant state. The presented estimator is compared to the original approach in terms of Monte Carlo simulations where its increased robustness towards imperfect knowledge of the underlying networks is indicated.

Keywords

State estimation Networked control systems Delays Packet losses Markov jump linear systems IMM filter 

Notes

Acknowledgments

This work is supported by the German Science Foundation (DFG) within the Priority Programme 1914 “Cyber-Physical Networking”.

References

  1. 1.
    Zhang, L., Gao, H., Kaynak, O.: Network-induced constraints in networked control systems a survey. IEEE Trans. Ind. Inform. 9(1), 403–416 (2013).  https://doi.org/10.1109/TII.2012.2219540CrossRefGoogle Scholar
  2. 2.
    Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked control systems. Proc. IEEE 95(1), 138–162 (2007).  https://doi.org/10.1109/JPROC.2006.887288CrossRefGoogle Scholar
  3. 3.
    Baillieul, J., Antsaklis, P.J.: Control and communication challenges in networked real-time systems. Proc. IEEE 95(1), 9–28 (2007).  https://doi.org/10.1109/JPROC.2006.887290CrossRefGoogle Scholar
  4. 4.
    Heemels, W.M.H., Teel, A.R., Van de Wouw, N., Nesic, D.: Networked control systems with communication constraints: tradeoffs between transmission intervals, delays and performance. IEEE Trans. Autom. Control 55(8), 1781–1796 (2010).  https://doi.org/10.1109/TAC.2010.2042352MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bemporad, A.: Predictive control of teleoperated constrained systems with unbounded communication delays. In: Proceedings of the 37th IEEE Conference on Decision and Control, vol. 2, pp. 2133–2138. IEEE (1998).  https://doi.org/10.1109/CDC.1998.758651
  6. 6.
    Gupta, V., Sinopoli, B., Adlakha, S., Goldsmith, A., Murray, R.: Receding horizon networked control. In: Proceedings of the Allerton Conference on Communication Control, and Computing (2006)Google Scholar
  7. 7.
    Quevedo, D.E., Nesic, D.: Input-to-state stability of packetized predictive control over unreliable networks affected by packet-dropouts. IEEE Trans. Autom. Control 56(2), 370–375 (2011).  https://doi.org/10.1109/TAC.2010.2095950MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fischer, J., Hekler, A., Dolgov, M., Hanebeck, U.D.: Optimal sequence-based LQG control over TCP-like networks subject to random transmission delays and packet losses. In: 2013 American Control Conference, Washington, D.C., USA, pp. 1543–1549 (2013).  https://doi.org/10.1109/ACC.2013.6580055
  9. 9.
    Dolgov, M., Fischer, J., Hanebeck, U.D.: Infinite-horizon sequence-based networked control without acknowledgments. In: 2015 American Control Conference (ACC), Chicago, Illinois, USA, pp. 402–408 (2015).  https://doi.org/10.1109/ACC.2015.7170769
  10. 10.
    Liu, G.P., Xia, Y., Chen, J., Rees, D., Hu, W.: Networked predictive control of systems with random network delays in both forward and feedback channels. IEEE Trans. Ind. Electron. 54(3), 1282–1297 (2007).  https://doi.org/10.1109/TIE.2007.893073CrossRefGoogle Scholar
  11. 11.
    Liu, G.: Predictive controller design of networked systems with communication delays and data loss. IEEE Trans. Circuits Syst. II Express Briefs 57(6), 481–485 (2010).  https://doi.org/10.1109/TCSII.2010.2048377CrossRefGoogle Scholar
  12. 12.
    Rosenthal, F., Noack, B., Hanebeck, U.D.: State estimation in networked control systems with delayed and lossy acknowledgments. In: 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Daegu, Korea, pp. 435–441 (2017).  https://doi.org/10.1109/MFI.2017.8170359
  13. 13.
    Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M.I., Sastry, S.S.: Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 49(9), 1453–1464 (2004).  https://doi.org/10.1109/TAC.2004.834121MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Schenato, L.: Optimal estimation in networked control systems subject to random delay and packet drop. IEEE Trans. Autom. Control 53(5), 1311–1317 (2008).  https://doi.org/10.1109/TAC.2008.921012MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Thapliyal, O., Nandiganahalli, J.S., Hwang, I.: Optimal state estimation for LTI systems with imperfect observations. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 2795–2800. IEEE (2017).  https://doi.org/10.1109/CDC.2017.8264065
  16. 16.
    Epstein, M., Shi, L., Murray, R.M.: An estimation algorithm for a class of networked control systems using UDP-like communication schemes. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 5597–5603. IEEE (2006).  https://doi.org/10.1109/CDC.2006.377481
  17. 17.
    Schenato, L., Sinopoli, B., Franceschetti, M., Poolla, K., Sastry, S.S.: Foundations of control and estimation over lossy networks. Proc. IEEE 95(1), 163–187 (2007).  https://doi.org/10.1109/JPROC.2006.887306CrossRefGoogle Scholar
  18. 18.
    Moayedi, M., Foo, Y.K., Soh, Y.C.: Filtering for networked control systems with single/multiple measurement packets subject to multiple-step measurement delays and multiple packet dropouts. Int. J. Syst. Sci. 42(3), 335–348 (2011).  https://doi.org/10.1080/00207720903513335MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Fischer, J., Hekler, A., Hanebeck, U.D.: State estimation in networked control systems. In: 2012 15th International Conference on Information Fusion, Singapore, pp. 1947–1954 (2012)Google Scholar
  20. 20.
    Schenato, L.: To zero or to hold control inputs with lossy links? IEEE Trans. Autom. Control 54(5), 1093–1099 (2009).  https://doi.org/10.1109/TAC.2008.2010999MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kim, D., Yoo, H.: TCP performance improvement considering ACK loss in ad hoc networks. J. Commun. Netw. 10(1), 98–107 (2008).  https://doi.org/10.1109/JCN.2008.6388333MathSciNetCrossRefGoogle Scholar
  22. 22.
    Cardwell, N., Savage, S., Anderson, T.: Modeling TCP latency. In: Proceedings of IEEE INFOCOM 2000, Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1742–1751. IEEE (2000).  https://doi.org/10.1109/INFCOM.2000.832574
  23. 23.
    Costa, O.L.V., Fragoso, M.D., Marques, R.P.: Discrete-Time Markov Jump Linear Systems. Springer Science & Business Media, New York (2006)zbMATHGoogle Scholar
  24. 24.
    Blom, H., Bar-Shalom, Y.: The interacting multiple model algorithm for systems with markovian switching coefficients. IEEE Trans. Autom. Control 33(8), 780–783 (1988).  https://doi.org/10.1109/9.1299CrossRefzbMATHGoogle Scholar
  25. 25.
    Ackerson, G., Fu, K.: On state estimation in switching environments. IEEE Trans. Autom. Control 15(1), 10–17 (1970).  https://doi.org/10.1109/TAC.1970.1099359CrossRefGoogle Scholar
  26. 26.
    Costa, O.: Linear minimum mean square error estimation for discrete-time markovian jump linear systems. IEEE Trans. Autom. Control 39(8), 1685–1689 (1994).  https://doi.org/10.1109/9.310052MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Costa, O.L.V., Guerra, S.: Stationary filter for linear minimum mean square error estimator of discrete-time markovian jump systems. IEEE Trans. Autom. Control 47(8), 1351–1356 (2002).  https://doi.org/10.1109/TAC.2002.800745MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Terra, M.H., Ishihara, J.Y., Jesus, G.: Information filtering and array algorithms for discrete-time markovian jump linear systems. IEEE Trans. Autom. Control 54(1), 158–162 (2009).  https://doi.org/10.1109/TAC.2008.2007181MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Li, X.R., Jilkov, V.P.: Survey of maneuvering target tracking. Part V: multiple-model methods. IEEE Trans. Aerosp. Electron. Syst. 41(4), 1255–1321 (2005).  https://doi.org/10.1109/TAES.2005.1561886CrossRefGoogle Scholar
  30. 30.
    Bar-Shalom, Y., Chen, H.: IMM estimator with out-of-sequence measurements. IEEE Trans. Aerosp. Electron. Syst. 41(1), 90–98 (2005).  https://doi.org/10.1109/TAES.2005.1413749CrossRefGoogle Scholar
  31. 31.
    Fioravanti, A.R., Gonçalves, A.P., Geromel, J.C.: Filtering of discrete-time markov jump linear systems with cluster observation: an approach to Gilbert-Elliot’s network channel. In: Control Conference (ECC), 2009 European, pp. 2283–2288. IEEE (2009)Google Scholar
  32. 32.
    Gonçalves, A.P., Fioravanti, A.R., Geromel, J.C.: Markov jump linear systems and filtering through network transmitted measurements. Signal Process. 90(10), 2842–2850 (2010).  https://doi.org/10.1016/j.sigpro.2010.04.007CrossRefzbMATHGoogle Scholar
  33. 33.
    Matei, I., Baras, J.S.: Optimal state estimation for discrete-time markovian jump linear systems, in the presence of delayed output observations. IEEE Trans. Autom. Control 56(9), 2235–2240 (2011).  https://doi.org/10.1109/TAC.2011.2160027MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Larsen, T.D., Andersen, N.A., Ravn, O., Poulsen, N.K.: Incorporation of time delayed measurements in a discrete-time kalman filter. In: Proceedings of the 37th IEEE Conference on Decision and Control, vol. 4, pp. 3972–3977. IEEE (1998).  https://doi.org/10.1109/CDC.1998.761918
  35. 35.
    Jung, M., Rosenthal, F.: CoCPN-Sim (2018). https://github.com/spp1914-cocpn/cocpn-sim
  36. 36.
    Kwakernaak, H., Sivan, R.: Linear Optimal Control Systems, vol. 1. Wiley-Interscience, New York (1972)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Florian Rosenthal
    • 1
  • Benjamin Noack
    • 1
  • Uwe D. Hanebeck
    • 1
  1. 1.Intelligent Sensor-Actuator-Systems Laboratory (ISAS), Institute for Anthropomatics and RoboticsKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations