Advertisement

Ensemble Kalman Filter Variants for Multi-Object Tracking with False and Missing Measurements

  • Fabian SiggesEmail author
  • Marcus Baum
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 501)

Abstract

In this chapter, we present an approach to Multi-Object Tracking (MOT) that is based on the Ensemble Kalman Filter (EnKF). The EnKF is a standard algorithm for data assimilation in high-dimensional state spaces that is mainly used in geosciences, but has so far only attracted little attention for object tracking problems. In our approach, the Optimal Subpattern Assignment (OSPA) distance is used for coping with unlabeled noisy measurements and a robust covariance estimation is done using FastMCD to deal with possible outliers due to false detections. A simple gating technique allows handling of missing detections. Additionally, a recently proposed JPDA variant of the EnKF is discussed. The filters are evaluated in two different scenarios with false detections, where a nearest neighbour Kalman Filter (NN-KF) serves as a baseline.

Keywords

Ensemble Kalman Filter OSPA-metric False detections Missing detections Multi-Object Tracking 

Notes

Acknowledgements

This work was supported by the Simulation Science Center Clausthal-Göttingen.

References

  1. 1.
    Bar-Shalom, Y., Willett, P.K., Tian, X.: Tracking and Data Fusion: A Handbook of Algorithms. YBS Publishing, Storrs (2011)Google Scholar
  2. 2.
    Baum, M., Willett, P., Hanebeck, U.D.: On Wasserstein barycenters and MMOSPA estimation. IEEE Sign. Process. Lett. 22(10), 1511–1515 (2015).  https://doi.org/10.1109/LSP.2015.2410217CrossRefGoogle Scholar
  3. 3.
    Blackman, S.S., Popoli, R.F.: Design and Analysis of Modern Tracking Systems. Arthech House, Norwood (1999)zbMATHGoogle Scholar
  4. 4.
    Blom, H., Bloem, E.: Probabilistic data association avoiding track coalescence. IEEE Trans. Autom. Control 45(2), 247–259 (2000).  https://doi.org/10.1109/9.839947MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boers, Y., Sviestins, E., Driessen, H.: Mixed labelling in multitarget particle filtering. IEEE Trans. Aerosp. Electron. Syst. 46(2), 792–802 (2010).  https://doi.org/10.1109/TAES.2010.5461657CrossRefGoogle Scholar
  6. 6.
    Burgers, G., van Leeuwen, P.J., Evensen, G.: Analysis scheme in the ensemble Kalman filter. Mon. Weather Rev. 126(6), 1719–1724 (1998)CrossRefGoogle Scholar
  7. 7.
    Crouse, D.F.: Advances in displaying uncertain estimates of multiple targets. In: SPIE – Signal Processing, Sensor Fusion, and Target Recognition XXII, vol. 8745, pp. 874,504–874,504–31 (2013).  https://doi.org/10.1117/12.2015147
  8. 8.
    Evensen, G.: Data Assimilation: The Ensemble Kalman Filter. Springer Science & Business Media, New York (2009)CrossRefGoogle Scholar
  9. 9.
    Guerriero, M., Svensson, L., Svensson, D., Willett, P.: Shooting two birds with two bullets: how to find minimum mean OSPA estimates. In: Proceedings of the 13th International Conference on Information Fusion (Fusion 2010) (2010)Google Scholar
  10. 10.
    Hanebeck, U.D., Baum, M.: Association-free direct filtering of multi-target random finite sets with set distance measures. In: Proceedings of the 18th International Conference on Information Fusion (Fusion 2015), Washington, USA (2015)Google Scholar
  11. 11.
    Jinan, R., Raveendran, T.: Particle filters for multiple target tracking. Procedia Technol. 24, 980–987 (2016)CrossRefGoogle Scholar
  12. 12.
    Mandel, J., Cobb, L., Beezley, J.D.: On the convergence of the ensemble Kalman filter. Appl. Math. 56(6), 533–541 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Romeo, K., Crouse, D.F., Bar-Shalom, Y., Willett, P.: The JPDAF in practical systems: approximations. In: Proceedings of SPIE 7698, Signal and Data Processing of Small Targets 2010, vol. 7698, pp. 76,981I–76,981I–10 (2010).  https://doi.org/10.1117/12.862932
  14. 14.
    Roth, M., Hendeby, G., Fritsche, C., Gustafsson, F.: The Ensemble Kalman filter: a signal processing perspective. EURASIP J. Adv. Sign. Process. 2017(1), 56 (2017).  https://doi.org/10.1186/s13634-017-0492-xCrossRefGoogle Scholar
  15. 15.
    Rousseeuw, P.J., Driessen, K.V.: A fast algorithm for the minimum covariance determinant estimator. Technometrics 41(3), 212–223 (1999)CrossRefGoogle Scholar
  16. 16.
    Schuhmacher, D., Vo, B.T., Vo, B.N.: A consistent metric for performance evaluation of multi-object filters. IEEE Trans. Sign. Process. 56(8), 3447–3457 (2008).  https://doi.org/10.1109/TSP.2008.920469MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sigges, F., Baum, M.: A nearest neighbour Ensemble Kalman Filter for multi-object tracking. In: 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Daegu, South Korea, pp. 227–232 (2017).  https://doi.org/10.1109/MFI.2017.8170433
  18. 18.
    Vo, B.N., Mallick, M., Bar-Shalom, Y., Coraluppi, S., Osborne, R., Mahler, R., Vo, B.T., Webster, J.G.: Multitarget Tracking. Wiley, New York (2015). https://doi.org/10.1002/047134608X.W8275CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of GoettingenGoettingenGermany

Personalised recommendations