Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 501))

Included in the following conference series:

  • 1107 Accesses

Abstract

Up to the present day, GPS signals are the key component in almost all outdoor navigation tasks of robotic platforms. To obtain the platform pose, comprising the position as well as the orientation, and receive information at a higher frequency, the GPS signals are commonly used in a GPS-corrected inertial navigation system (INS). However, the GPS is a critical single point of failure for unmanned aircraft systems (UAS). We propose an approach which creates a metric map of the overflown area by fusing camera images with inertial and GPS data during normal UAS operation and use this map to steer the system efficiently to its home position in the case of an GPS outage. A naive approach would follow the previously traveled path and get accurate pose estimates by comparing the current camera image with the previously created map. The presented procedure allows the usage of shortcuts through unexplored areas to minimize the travel distance. Thereby, we ensure to reach the starting point by taking into consideration the maximal positional drift while performing pure visual navigation in unknown areas. We achieved close to optimal results in intensive numerical studies and demonstrate the usage of the algorithm in a realistic simulation environment and the real-world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bender, D., Cremers, D., Koch, W.: A position free boresight calibration for INS-camera systems. In: 2016 International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 52–57 (2016)

    Google Scholar 

  2. Bender, D., Cremers, D., Koch, W.: Map-based drone homing using shortcuts. In: 2017 International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 505–511 (2017)

    Google Scholar 

  3. Bender, D., Rouatbi, F., Schikora, M., Cremers, D., Koch, W.: Scaling the world of monocular SLAM with INS-measurements for UAS navigation. In: 2016 19th International Conference on Information Fusion (FUSION), pp. 1493–1500 (2016)

    Google Scholar 

  4. Chapuis, N.: Les opérations structurantes dans la connaissance de l’espace chez les mammifères: détour, raccourci et retour. Ph.D. thesis, Université Aix-Marseille 2 (1988)

    Google Scholar 

  5. Engel, J., Sturm, J., Cremers, D.: Semi-dense visual odometry for a monocular camera. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 1449–1456 (2013)

    Google Scholar 

  6. Giusti, A., Guzzi, J., Cireşan, D.C., He, F.L., Rodriguez, J.P., Fontana, F., Faessler, M., Forster, C., Schmidhuber, J., Di Caro, G., Scaramuzza, D., Gambardella, L.M.: A machine learning approach to visual perception of forest trails for mobile robots. IEEE Robot. Autom. Lett. 1(2), 661–667 (2016)

    Article  Google Scholar 

  7. Koenig, N., Howard, A.: Design and use paradigms for Gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2149–2154 (2004)

    Google Scholar 

  8. Liu, H., Jiang, R., Hu, W., Wang, S.: Navigational drift analysis for visual odometry. Comput. Inform. 33(3), 685–706 (2014)

    Google Scholar 

  9. Meyer, J.A., Filliat, D.: Map-based navigation in mobile robots: II. A review of map-learning and path-planning strategies. Cogn. Syst. Res. 4(4), 283–317 (2003)

    Article  Google Scholar 

  10. Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., von Stryk, O.: Comprehensive simulation of quadrotor UAVs using ROS and Gazebo. In: Simulation, Modeling, and Programming for Autonomous Robots, pp. 400–411. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Nelson, R.C.: Visual homing using an associative memory. Bio. Cybern. 65(4), 281–291 (1991)

    Article  Google Scholar 

  12. Nieves, H.: The City: 3D Model. http://sharecg.com/v/79711/gallery/5/3D-Model/The-City (2015). Accessed 20 Feb 2018

  13. Pomerleau, D.A.: Neural network based autonomous navigation. In: Vision and Navigation, pp. 83–93. Springer, Boston (1990)

    Google Scholar 

  14. SBG Systems: Ellipse Series: Miniature High Performance Inertial Sensors: technical data sheet. https://www.sbg-systems.com/docs/Ellipse_Series_Leaflet.pdf (2015). Accessed 3 Oct 2017

  15. Sibley, G., Mei, C., Reid, I., Newman, P.: Vast-scale outdoor navigation using adaptive relative bundle adjustment. Int. J. Robot. Res. 29(8), 958–980 (2010)

    Article  Google Scholar 

  16. Trullier, O., Wiener, S.I., Berthoz, A., Meyer, J.A.: Biologically based artificial navigation systems: review and prospects. Prog. Neurobiol. 51(5), 483–544 (1997)

    Article  Google Scholar 

  17. Valencia, R., Andrade-Cetto, J., Porta, J.M.: Path planning in belief space with pose SLAM. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 78–83 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Bender .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bender, D., Koch, W., Cremers, D. (2018). SLAM-Based Return to Take-Off Point for UAS. In: Lee, S., Ko, H., Oh, S. (eds) Multisensor Fusion and Integration in the Wake of Big Data, Deep Learning and Cyber Physical System. MFI 2017. Lecture Notes in Electrical Engineering, vol 501. Springer, Cham. https://doi.org/10.1007/978-3-319-90509-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90509-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90508-2

  • Online ISBN: 978-3-319-90509-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics