Skip to main content

Coupled Spin and Heat Transport in Superconductor Hybrid Structures

  • Chapter
  • First Online:
Functional Nanostructures and Metamaterials for Superconducting Spintronics

Part of the book series: NanoScience and Technology ((NANO))

  • 995 Accesses

Abstract

Superconductor–ferromagnet nanoscale hybrid structures have attracted considerable theoretical and experimental efforts, both due to the fundamental question of the competition of superconductivity and magnetism, and possible applications in superconducting spintronics and quantum information processing. Most of the attention has recently been focussed on magnetic Josephson junctions and the triplet proximity effect, and several chapters in this book are devoted to this topic. In addition to triplet Cooper pairs, superconductor–ferromagnet hybrid structures feature spin-polarized quasiparticle transport. Quasiparticles are exclusively responsible for heat transport in superconductors, since the Cooper pairs carry no entropy. In this chapter, we discuss recent developments in the investigation of coupled quasiparticle spin and heat transport in nanoscale superconductors with a spin splitting of the density of states. The coupling of spin and heat transport leads to very slow spin relaxation and giant thermoelectric effects, which could lead to interesting applications in thermometry or microrefrigeration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.S. Bergeret, A.F. Volkov, K.B. Efetov, Rev. Mod. Phys. 77(4), 1321 (2005). https://doi.org/10.1103/revmodphys.77.1321

  2. A.I. Buzdin, Rev. Mod. Phys. 77(3), 935 (2005). https://doi.org/10.1103/revmodphys.77.935

  3. M. Eschrig, Phys. Today 64(1), 43 (2011). https://doi.org/10.1063/1.3541944

  4. M.G. Blamire, J.W.A. Robinson, J. Phys.: Condens. Matter 26(45), 453201 (2014). https://doi.org/10.1088/0953-8984/26/45/453201

  5. J. Linder, J.W.A. Robinson, Nat. Phys. 11(4), 307 (2015). https://doi.org/10.1038/nphys3242

  6. M. Eschrig, Rep. Prog. Phys. 78(10), 104501 (2015). https://doi.org/10.1088/0034-4885/78/10/104501

  7. See also chapters 1, 2, 3 and 4 in this book

  8. A.K. Feofanov, V.A. Oboznov, V.V. Bol’ginov, J. Lisenfeld, S. Poletto, V.V. Ryazanov, A.N. Rossolenko, M. Khabipov, D. Balashov, A.B. Zorin, P.N. Dmitriev, V.P. Koshelets, A.V. Ustinov, Nat. Phys 6(8), 593 (2010). https://doi.org/10.1038/nphys1700

  9. R. Meservey, P.M. Tedrow, Phys. Rep. 238(4), 173 (1994). https://doi.org/10.1016/0370-1573(94)90105-8

  10. D. Beckmann, J. Phys.: Condens. Mater 28(16), 163001 (2016). https://doi.org/10.1088/0953-8984/28/16/163001

  11. J.F. Žutić, S. Das Sarma, Rev. Mod. Phys. 76(2), 323 (2004). https://doi.org/10.1103/revmodphys.76.323

  12. G.E.W. Bauer, E. Saitoh, B.J. van Wees, Nat. Mater. 11(5), 391 (2012). https://doi.org/10.1038/nmat3301

  13. A.V. Chumak, V.I. Vasyuchka, A.A. Serga, B. Hillebrands, Nat. Phys. 11(6), 453 (2015). https://doi.org/10.1038/nphys3347

  14. M. Tinkham, J. Clarke, Phys. Rev. Lett. 28(21), 1366 (1972). https://doi.org/10.1103/physrevlett.28.1366

  15. G.S. Schmid, J. Low Temp. Phys. 20(1-2), 207 (1975). https://doi.org/10.1007/bf00115264

  16. J.P. Morten, A. Brataas, W. Belzig, Phys. Rev. B 70(21), 212508 (2004). https://doi.org/10.1103/physrevb.70.212508

  17. R. Meservey, P.M. Tedrow, P. Fulde, Phys. Rev. Lett. 25(18), 1270 (1970). https://doi.org/10.1103/physrevlett.25.1270

  18. P.M. Tedrow, R. Meservey, Phys. Rev. Lett. 26(4), 192 (1971). https://doi.org/10.1103/physrevlett.26.192

  19. D.R. Millis, J.A. Sauls, Phys. Rev. B 38(7), 4504 (1988). https://doi.org/10.1103/physrevb.38.4504

  20. T. Tokuyasu, J.A. Sauls, D. Rainer, Phys. Rev. B 38(13), 8823 (1988). https://doi.org/10.1103/physrevb.38.8823

  21. R. Meservey, P.M. Tedrow, R.C. Bruno, Phys. Rev. B 11(11), 4224 (1975). https://doi.org/10.1103/physrevb.11.4224

  22. F. Hübler, J. Camirand Lemyre, D. Beckmann, H. v. Löhneysen, Phys. Rev. B 81(18), 184524 (2010). https://doi.org/10.1103/physrevb.81.184524

  23. F.J. Jedema, A.T. Filip, B.J. van Wees, Nature 410(6826), 345 (2001). https://doi.org/10.1038/35066533

  24. F.J. Jedema, H.B. Heersche, A.T. Filip, J.J.A. Baselmans, B.J. van Wees, Nature 416(6882), 713 (2002). https://doi.org/10.1038/416713a

  25. F.J. Jedema, M.S. Nijboer, A.T. Filip, B.J. van Wees, Phys. Rev. B 67(8), 085319 (2003). https://doi.org/10.1103/physrevb.67.085319

  26. N. Poli, J.P. Morten, M. Urech, A. Brataas, D.B. Haviland, V. Korenivski, Phys. Rev. Lett. 100(13), 136601 (2008). https://doi.org/10.1103/physrevlett.100.136601

  27. I.V. Bobkova, A.M. Bobkov, Phys. Rev. B 93(2), 024513 (2016). https://doi.org/10.1103/physrevb.93.024513

  28. M.J. Wolf, C. Sürgers, G. Fischer, D. Beckmann, Phys. Rev. B 90(14), 144509 (2014). https://doi.org/10.1103/physrevb.90.144509

  29. M. Silaev, P. Virtanen, F.S. Bergeret, T.T. Heikkilä, Phys. Rev. Lett. 114(16), 167002 (2015). https://doi.org/10.1103/physrevlett.114.167002

  30. I.V. Bobkova, A.M. Bobkov, JETP Lett. 101(2), 118 (2015). https://doi.org/10.1134/s0021364015020022

  31. T. Krishtop, M. Houzet, J.S. Meyer, Phys. Rev. B 91(12), 121407 (2015). https://doi.org/10.1103/physrevb.91.121407

  32. F. Hübler, M.J. Wolf, D. Beckmann, H. v. Löhneysen, Phys. Rev. Lett. 109(20), 207001 (2012). https://doi.org/10.1103/physrevlett.109.207001

  33. M.J. Wolf, F. Hübler, S. Kolenda, H. v. Löhneysen, D. Beckmann, Phys. Rev. B 87(2), 024517 (2013). https://doi.org/10.1103/physrevb.87.024517

  34. M.J. Wolf, F. Hübler, S. Kolenda, D. Beckmann, Beilstein J. Nanotechnol. 5, 180 (2014). https://doi.org/10.3762/bjnano.5.18

  35. C.H.L. Quay, D. Chevallier, C. Bena, M. Aprili, Nat. Phys. 9(2), 84 (2013). https://doi.org/10.1038/nphys2518

  36. C.H.L. Quay, M. Weideneder, Y. Chiffaudel, C. Strunk, M. Aprili, Nat. Commun. 6, 8660 (2015). https://doi.org/10.1038/ncomms9660

  37. C.H.L. Quay, C. Dutreix, D. Chevallier, C. Bena, M. Aprili, Phys. Rev. B 93(22), 220501 (2016). https://doi.org/10.1103/physrevb.93.220501

  38. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976)

    Google Scholar 

  39. L. Onsager, Phys. Rev. 38(12), 2265 (1931). https://doi.org/10.1103/physrev.38.2265

  40. N.F. Mott, H. Jones, The Theory of the Properties of Metals and Alloys (Clarendon Press, Oxford, 1936)

    Google Scholar 

  41. J. Kondo, Prog. Theor. Phys. 34(3), 372 (1965). https://doi.org/10.1143/ptp.34.372

  42. C.W.J. Beenakker, A.A.M. Staring, Phys. Rev. B 46(15), 9667 (1992). https://doi.org/10.1103/physrevb.46.9667

  43. V.L. Ginzburg, Rev. Mod. Phys. 76(3), 981 (2004). https://doi.org/10.1103/revmodphys.76.981

  44. Y.M. Gal’perin, V.L. Gurevich, V.I. Kozub, Sov. Phys. JETP 39(4), 680 (1974)

    Google Scholar 

  45. C.D. Shelly, E.A. Matrozova, V.T. Petrashov, Sci. Adv. 2(2), e1501250 (2016). https://doi.org/10.1126/sciadv.1501250

  46. C.J. Pethick, H. Smith, Phys. Rev. Lett. 43(9), 640 (1979). https://doi.org/10.1103/physrevlett.43.640

  47. P. Virtanen, T.T. Heikkilä, Phys. Rev. Lett. 92(17), 177004 (2004). https://doi.org/10.1103/physrevlett.92.177004

  48. J. Clarke, B.R. Fjordbøge, P.E. Lindelof, Phys. Rev. Lett. 43(9), 642 (1979). https://doi.org/10.1103/physrevlett.43.642

  49. J. Eom, C.J. Chien, V. Chandrasekhar, Phys. Rev. Lett. 81(2), 437 (1998). https://doi.org/10.1103/physrevlett.81.437

  50. Parsons, I.A. Sosnin, V.T. Petrashov, Phys. Rev. B 67(14), 140502 (2003). https://doi.org/10.1103/physrevb.67.140502

  51. V. Chandrasekhar, Supercond. Sci. Technol. 22(8), 083001 (2009). https://doi.org/10.1088/0953-2048/22/8/083001

  52. Z. Jiang, V. Chandrasekhar, Phys. Rev. B 72(2), 020502 (2005). https://doi.org/10.1103/physrevb.72.020502

  53. F. Giazotto, M.J. Martínez-Pérez, Nature 492(7429), 401 (2012). https://doi.org/10.1038/nature11702

  54. M. José Martínez-Pérez, F. Giazotto, Nat. Commun. 5, 3579 (2014). https://doi.org/10.1038/ncomms4579

  55. S. Kolenda, J. Wolf, M.D. Beckmann, Phys. Rev. Lett. 116(9), 097001 (2016). https://doi.org/10.1103/physrevlett.116.097001

  56. P. Machon, M. Eschrig, W. Belzig, Phys. Rev. Lett. 110(4), 047002 (2013). https://doi.org/10.1103/physrevlett.110.047002

  57. P. Machon, M. Eschrig, W. Belzig, New J. Phys. 16(7), 073002 (2014). https://doi.org/10.1088/1367-2630/16/7/073002

  58. Ozaeta, P. Virtanen, F.S. Bergeret, T.T. Heikkilä, Phys. Rev. Lett. 112(5), 057001 (2014). https://doi.org/10.1103/physrevlett.112.057001

  59. M.S. Kalenkov, A.D. Zaikin, Phys. Rev. B 90(13), 134502 (2014). https://doi.org/10.1103/physrevb.90.134502

  60. M.S. Kalenkov, A.D. Zaikin, Phys. Rev. B 91(6), 064504 (2015). https://doi.org/10.1103/physrevb.91.064504

  61. S. Kolenda, P. Machon, D. Beckmann, W. Belzig, Beilstein J. Nanotechnol. 7, 1579 (2016)

    Google Scholar 

  62. J.A.X. Alexander, T.P. Orlando, D. Rainer, P.M. Tedrow, Phys. Rev. B 31(9), 5811 (1985). https://doi.org/10.1103/physrevb.31.5811

  63. F. Giazotto, T.T. Heikkilä, A. Luukanen, A.M. Savin, J.P. Pekola, Rev. Mod. Phys. 78(1), 217 (2006). https://doi.org/10.1103/revmodphys.78.217

  64. F. Giazotto, P. Solinas, A. Braggio, F.S. Bergeret, Phys. Rev. Appl. 4(4), 044016 (2015). https://doi.org/10.1103/physrevapplied.4.044016

  65. J.S. Moodera, X. Hao, G.A. Gibson, R. Meservey, Phys. Rev. Lett. 61(5), 637 (1988). https://doi.org/10.1103/physrevlett.61.637

  66. X. Hao, J.S. Moodera, R. Meservey, Phys. Rev. B 42(13), 8235 (1990). https://doi.org/10.1103/physrevb.42.8235

  67. P.M. Tedrow, J.E. Tkaczyk, A. Kumar, Phys. Rev. Lett. 56(16), 1746 (1986). https://doi.org/10.1103/physrevlett.56.1746

  68. A.A. Abrikosov, L.P. Gor’kov, Sov. Phys. JETP 12, 1243 (1961)

    Google Scholar 

  69. K. Maki, Prog. Theor. Phys. 31(5), 731 (1964). https://doi.org/10.1143/ptp.31.731

  70. J.T. Muhonen, M. Meschke, J.P. Pekola, Rep. Prog. Phys. 75(4), 046501 (2012). https://doi.org/10.1088/0034-4885/75/4/046501

  71. J. Linder, M.E. Bathen, Phys. Rev. B 93(22), 224509 (2016). https://doi.org/10.1103/physrevb.93.224509

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlef Beckmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beckmann, D. (2018). Coupled Spin and Heat Transport in Superconductor Hybrid Structures. In: Sidorenko, A. (eds) Functional Nanostructures and Metamaterials for Superconducting Spintronics. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-90481-8_8

Download citation

Publish with us

Policies and ethics