Skip to main content

Imprints of Neo-tectonism in the Evolutionary Record Along the Course of Khari River in Damodar Fan Delta of Lower Ganga Basin

  • Chapter
  • First Online:
Quaternary Geomorphology in India

Abstract

Neo-tectonism affected the evolution of landscape across the earth since post-Miocene. The Khari river in Lower Damodar fan delta in West Bengal similarly portrayed the imprints of neo-tectonism in the forms of rapidly changing meander geometry , deformation in long profiles, unpaired terraces, soft sediment structures (fluid escape structure and convolute ), etc. The study of meander geometry considering 142 loops (upper—92, middle—38 and lower—12) for the years 1972 (Survey of India topo-sheet) and 2017 (Google Earth images) portrayed rapidity in channel evolution in the middle and the lower stretches of the river compared to its upper counterpart as shown by the changing sinuosity index during 1972 and 2017 (upper: 0.1, middle: −0.4 and lower: −0.42), radius–wavelength ratio (upper: 0.01, middle: −0.06 and lower: −0.04), meander shape index  (upper: −0.05, middle: −0.09 and lower: −0.01), and meander form index (upper: −0.02, middle: −0.17 and lower: −0.13). We found this kind of meander behaviour to be correlated with the negative Bouguer anomaly (−45 to −30 m Gal) in the middle reach. Similarly, based on SRTM DEM (30 m), we detected a break in the long profile at the middle reach underlain by a sub-surface fault. In addition, we observed unpaired terraces in the middle reach. Besides, our extensive field survey guided us to identify long continued fluid escape structure and convolute along the banks of the river and a typical sedimentary facies which proved to be tectonically controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal K, Singh I, Sharma M, Sharma S, Rajagopalan G (2002) Extensional tectonic activity in the cratonward parts (peripheral bulge) of the Ganga Plain Foreland Basin, India. Int J Earth Sci 91(5):897–905

    Article  Google Scholar 

  • AGI (2009) Glossary of geology. American Geological institute, Washington, D.C., online version. www.agiweb.org. Accessed Nov 2009

  • Akter J, Sarker MH, Popescu L, Roelvink D (2016) Evolution of the Bengal Delta and its prevailing processes. J Coast Res 321:1212–1226

    Article  Google Scholar 

  • Ashley GH (1931) Our youthful scenery. Geol Soc Am Bull 42:537–546

    Article  Google Scholar 

  • Bil M (2002) The identification of neotectonics based on changes of valley floor width. Landform Anal 3:77–85

    Google Scholar 

  • Brice JC (1964) Channel patterns and terraces of the Loup rivers in Nebraska, U.S. Geological Survey, Prof. Paper 422D. In: Morisawa M (1968) Streams: their dynamics and morphology. McGraw Hill Book Co., New York, p 138

    Google Scholar 

  • Brice JC (1984) Planform properties of meandering river. In: Elliott CM (ed) Proceedings of the conference of river meandering’83. American Society of Civil Engineers, New Orleans, Louisiana, pp 393–399

    Google Scholar 

  • Brookfield ME (1998) The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: rivers draining southwards. Geomorphology 22:285–312

    Article  Google Scholar 

  • Burbank DW, Anderson RS (2001) Tectonic geomorphology. Blackwell Scientific, Oxford, p 270

    Google Scholar 

  • Cotton CA (1952) Geomorphology an introduction to the study of landforms. Wiley, New York, p 100

    Google Scholar 

  • Cremon ÉH, Rossetti DD, Sawakuchi AD, Cohen MC (2016) The role of tectonics and climate in the late quaternary evolution of a Northern Amazonian River. Geomorphology 271(15), 22–39

    Article  Google Scholar 

  • Cunha PP et al (2005) Tectonic control of the Tejo river fluvial incision during the late Cenozoic, in Ródão—central Portugal (Atlantic Iberian border). Geomorphology 64:271–298

    Article  Google Scholar 

  • Das BC (2014) Two indices to measure the intensity of meander. In: Singh RB, Hassan MI (eds) Advances in geographical and environmental sciences, pp 233–246

    Google Scholar 

  • Dar RA, Chandra R, Romshoo SA (2013) Morphotectonic and lithostratigraphic analysis of intermontane Karewa Basin of Kashmir Himalayas, India. J Mt Sci 10(1):1–15

    Article  Google Scholar 

  • Dey S (2014) Fluvial processes: meandering and braiding. In: Fluvial hydrodynamics. GeoPlanet: earth and planetary sciences. Springer, Berlin, Heidelberg

    Google Scholar 

  • Ghosh S, Islam A (2016) Quaternary alluvial stratigraphy and palaeoclimatic reconstruction in the Damodar River Basin of West Bengal. In: Das B, Ghosh S, Islam A, Ismail M (eds) Neo-Thinking on Ganges-Brahmaputra Basin Geomorphology. Springer Geography. Springer, Cham

    Google Scholar 

  • Goodbred SL Jr (2003) Response of the Ganges dispersal system to climate change: a source-to-sink view since the last interstade. Sed Geol 162(1–2):83–104

    Article  Google Scholar 

  • Goodbred JS, Kuhel SA (2000a) Enormous Ganges-Brahmaputra sediment load during strengthened early Holocene monsoon. Geology 28(12):1083–1086

    Article  Google Scholar 

  • Goodbred SL Jr, Kuhel SA (2000b) The significance of large sediment supply, active tectonism, eustasy on the margin sequence development: late quaternary stratigraphy and evolution of the Ganges-Brahmaputra Delta. Sed Geol 133(3–4):227–248

    Article  Google Scholar 

  • Goswami C (2011) Tectonic control on the drainage system in a piedmont region in tectonically active eastern Himalayas. Front Earth Sci. https://doi.org/10.1007/s11707-012-0297-z

  • Hack JT (1973a) Drainage adjustments in the Appalachians. In: Marisawa M (ed) Fluvial geomorphology. State University of New York, Binghamton, NY, pp 51–69

    Google Scholar 

  • Hack JT (1973b) Stream profile analysis and stream-gradient index. J Res US Geol Sur 1(4):421–429

    Google Scholar 

  • Islam A, Guchhait SK (2017) Analysing the influence of Farakka Barrage Project on channel dynamics and meander geometry of Bhagirathi river of West Bengal, India. Arab J Geosci 10(11)

    Google Scholar 

  • Kober F, Zeilinger G, Ivy-Ochs S, Dolati A, Smit J, Kubik PW (2013) Climatic and tectonic control on fluvial and alluvial fan sequence formation in the Central Makran Range, SE-Iran. Global Planet Change 111:133–149

    Article  Google Scholar 

  • Lahiri S (1996) Channel pattern as signature of neotectonic movements—A Case study from Brahmaputra Valley in Assam. J Indian Soc Remote Sens 24(4):265–272

    Article  Google Scholar 

  • Latrubesse EM, Franzinelli E (2002) The Holocene alluvial plain of the middle Amazon River, Brazil. Geomorphology 44(3–4):241–257

    Article  Google Scholar 

  • Leopold LB, Langbein WB (1966) River meanders. Sci Am 214(6):60

    Article  Google Scholar 

  • Leopold LB, Wolman MG (1957) River channel patterns-braided, meandering and straight. U.S. Geological Survey, Prof. Paper 282B. In: Morisawa M (1968) Streams: their dynamics and morphology. McGraw Hill, New York, p 138

    Google Scholar 

  • Leopold LB, Wolman MG (1960) River meanders. Bull Geol Soc Am 71:774. In: Julien PY (1985) Planform geometry of meandering alluivial channels. Civil Engineering Department, Engineering Research Center, Colorado State University, p 6

    Article  Google Scholar 

  • Leopold LB, Wolman MG, Miller JP (1964) Fluvial processes in geomorphology. W.H. Freeman and Company, San Francisco and London, p 281

    Google Scholar 

  • Leopold LB, Wolman MG, Miller JP (1992) Fluvial processes in geomorphology. Dover Publications Inc., New York, p 281

    Google Scholar 

  • Mats VD, Khlystov OM, Batist MD, Ceramicola S, Lomonosova TK, Klimansky A (2000) Evolution of the academician ridge accommodation zone in the central part of the baikal rift, from high-resolution reflection seismic profiling and geological field investigations. Int J Earth Sci 89(2):229–250

    Article  Google Scholar 

  • Miall AD (1985) Architectural element analysis: a new method of facies analysis applied to fluvial deposits. Earth Sci Rev 22:261–308

    Article  Google Scholar 

  • Perucca LP et al (2013). Morphotectonic and neotectonic control on river pattern in the Sierra de la Cantera piedmont, central Precordillera, province of San Juan, Argentina. Geomorphology. https://doi.org/10.1016/j.geomorph.2013.09.014

  • Radoane M et al (2003) Geomorphological evolution of longitudinal river profiles in the Carpathians. Geomorphology 50:293–306

    Article  Google Scholar 

  • Rosenau MR (2014) Tectonics of the Southern Andean intra-arc zone (38°–42°S). An unpublished PhD dissertation. Free University of Berlin, Department of Geosciences, Berlin

    Google Scholar 

  • Rosgen DL (1994) A classification of natural rivers. Catena 22(3):169–199

    Article  Google Scholar 

  • Roy S, Sahu AS (2015) Quaternary tectonic control on channel morphology over sedimentary low land: a case study in the Ajay-Damodar interfluve of Eastern India 6(6):927–946

    Google Scholar 

  • Sarkar S, Banerjee S, Chakraborty S (1995) Synsedimentary seismic signature in Mesoproterozoic Koldaha Shale, Kheinjua formation, central India. Indian J Earth Sci 22:158–164

    Google Scholar 

  • Sarkar S, Chakraborty S, Banerjee S, Bose PK (2002) Facies sequence and cryptic imprint of sag tectonics in late Proterozoic Sirbu Shale, central India. In: Altermann W, Corcoran P (eds) Precambrian sedimentary environments: a modern approach to ancient depositional systems. Special publication of the International Association of Sedimentologists, No. 33. Blackwell Science, pp 369–382

    Google Scholar 

  • Sarkar A, Sengupta S, McArthur JM, Ravenscroft P, Bera MK, Bhusan R et al (2009) Evolution of Ganges-Brahmaputra western Delta plain: clues from sedimentology. Quatern Sci Rev 28:2564–2581

    Article  Google Scholar 

  • Schumm SA (1963) Sinuosity of alluvial rivers of the great plains. Geol Soc Ma Bull 74:1089–1100. In: Morisawa M (1968) Streams: their dynamics and morphology. McGraw Hill Book Co., p 138

    Google Scholar 

  • Schumm SA (2005) River variability and complexity. Cambridge University Press, Cambridge, p 65

    Google Scholar 

  • Seeber L, Gornitz V (1983) River profiles along the Himalayan arc as indicators of active tectonics. Tectonophysics 92:335–367

    Article  Google Scholar 

  • Sen PK (1976) A study of the hydrological characteristics of the Banka Basin. Indian J Power Valley Develop, pp 353–358 (November, Calcutta)

    Google Scholar 

  • Sen PK (1978) Evaluation of the hydrogeomorphological analysis of the Bhagirathi-Hooghly and Damadar interfluve: UGC research project. Department of Geography, The University of Burdwan

    Google Scholar 

  • Seth A, Sarkar S, Bose PK (1990) Synsedimentary seismic activity in an immature passive margin basin, lower member of Katrol Formation, Upper Jurassic, Kutch, India. Sed Geol 68:279–291

    Article  Google Scholar 

  • Shahjahan M (1970) Factors controlling the geometry of fluvial meanders. Int Assoc Sci Hydrol B 15(3):13–24

    Article  Google Scholar 

  • Shukla UK, Bora DS, Singh CK (2009) Geomorphic positioning and depositional dynamics of river systems in lower Siwalik Basin, Kumaun Himalaya. J Geol Soc India 73:335

    Article  Google Scholar 

  • Silver CRP, Murphy MA, Taylor MH, Gosse J, Baltz T (2015) Neotectonics of the western Nepal fault system: implications for Himalayan strain partitioning. Tectonics 34(12):2494–2513

    Article  Google Scholar 

  • Sinha-Roy S (2001) Neotectonically controlled catchment capture: an example from the Banas and Chambal drainage basins, Rajasthan. Curr Sci 80(2):25

    Google Scholar 

  • Sougnez N, Vanacker V (2011) The topographic signature of quaternary tectonic uplift in the Ardennes Massif (Western Europe). Hydrol Earth Syst Sci 15:1095–1107

    Article  Google Scholar 

  • Štěpančíková P et al (2008) Neotectonic development of drainage networks in the East Sudeten Mountains and monitoring of recent fault displacements (Czech Republic). Geomorphology 102:68–80

    Article  Google Scholar 

  • Stolum HH (2013) In: Richeson D (ed) The geometry of meandering rivers. Internet: www.divisbyzero.com-1490x718

  • Timar G (2003) Controls on channel sinuosity changes: a case study of the Tisza River, the Great Hungarian Plain. Quatern Sci Rev 22:2199–2207

    Article  Google Scholar 

  • Zámolyi et al (2010) Neotectonic control on river sinuosity at the western margin of the Little Hungarian Plain. Geomorphology 122:231–243

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aznarul Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barman, S.D., Islam, A., Das, B.C., Mandal, S., Pal, S.C. (2019). Imprints of Neo-tectonism in the Evolutionary Record Along the Course of Khari River in Damodar Fan Delta of Lower Ganga Basin. In: Das, B., Ghosh, S., Islam, A. (eds) Quaternary Geomorphology in India. Geography of the Physical Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-90427-6_6

Download citation

Publish with us

Policies and ethics