Assuring Virtual PLC in the Context of SysML Models

  • Mounifah Alenazi
  • Deepak Reddy
  • Nan NiuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10826)


In complex industrial projects, textual information has been recognized as an important factor for automatically recovering trace links in software development. The goal of this paper is to empirically investigate if the trace links in the simulation result can assist in validating a virtual Programmable Logic Controller (PLC) in the context of System Modeling Language (SysML). We integrate the concept of obstacle analysis to recover situations in which a safety requirement will not be satisfied. Therefore, we use fault tree analysis to validate the safety requirements, and further use the elements of the fault tree to evaluate the quality of the automatically recovered trace links. We showed that the identified impacts of assuring virtual PLC (V-PLC) elements using traceability information can be reused to ensure a number of other PLCs or requirements in the systems models. This paper presents our experience of applying our approach using an automatic transmission systems built in SysML models.


Systems Modeling Language (SysML) Programmable Logic Controller (PLC) Trace links Natural Language Processing (NLP) similarity measures Fault Tree Analysis 



This research is partially supported by the U.S. National Science Foundation (Award CCF-1350487).


  1. 1.
    Alenazi, M., Niu, N., Wang, W., Gupta, A.: Traceability for automated production systems: a position paper. In: 2017 IEEE 25th International Requirements Engineering Conference Workshops (REW), pp. 51–55. IEEE (2017)Google Scholar
  2. 2.
    Arunthavanathan, A., Shanmugathasan, S., Ratnavel, S., Thiyagarajah, V., Perera, I., Meedeniya, D., Balasubramaniam, D.: Support for traceability management of software artefacts using natural language processing. In: Moratuwa Engineering Research Conference (MERCon 2016), pp. 18–23. IEEE (2016)Google Scholar
  3. 3.
    Balakrishnan, N.: An overview of system safety assessment. In: Dependability in Medicine and Neurology, pp. 33–81. Springer, Cham (2015). Scholar
  4. 4.
    Bhavsar, P., Das, P., Paugh, M., Dey, K., Chowdhury, M.: Risk analysis of autonomous vehicles in mixed traffic streams. Transp. Res. Rec. J. Transp. Res. Board 2625, 51–61 (2017)CrossRefGoogle Scholar
  5. 5.
    Biggs, G., Sakamoto, T., Kotoku, T.: A profile and tool for modelling safety information with design information in SysML. Softw. Syst. Model. 15(1), 147–178 (2016)CrossRefGoogle Scholar
  6. 6.
    Brecher, C., Nittinger, J.A., Karlberger, A.: Model-based control of a handling system with SysML. Procedia Comput. Sci. 16, 197–205 (2013)CrossRefGoogle Scholar
  7. 7.
    Briand, L., Falessi, D., Nejati, S., Sabetzadeh, M., Yue, T.: Traceability and SysML design slices to support safety inspections: a controlled experiment. ACM Trans. Softw. Eng. Methodol. (TOSEM) 23(1), 9 (2014)CrossRefGoogle Scholar
  8. 8.
    Cleland-Huang, J., Gotel, O.C., Huffman Hayes, J., Mäder, P., Zisman, A.: Software traceability: trends and future directions. In: Proceedings of the on Future of Software Engineering, pp. 55–69. ACM (2014)Google Scholar
  9. 9.
    Crisp, H.: INCOSE systems engineering vision 2020. Technical report, INCOSE-TP-2004-004-02, September 2007Google Scholar
  10. 10.
    Delgoshaei, P., Austin, M.A., Veronica, D.A.: A semantic platform infrastructure for requirements traceability and system assessment. In: The Ninth International Conference on Systems (ICONS 2014), pp. 215–219 (2014)Google Scholar
  11. 11.
    Dong, Z., Zhang, P.: Emerging Techniques in Power System Analysis. Springer, Berlin (2010). Scholar
  12. 12.
    Efthimiadis, E.N.: Query expansion. Ann. Rev. Inf. Sci. Technol. (ARIST) 31, 121–187 (1996)Google Scholar
  13. 13.
    Elavarasi, S.A., Akilandeswari, J., Menaga, K.: A survey on semantic similarity measure. Int. J. Res. Advent Technol. 2(3), 389–398 (2014)Google Scholar
  14. 14.
    Gali, N., Mariescu-Istodor, R., Fränti, P.: Similarity measures for title matching. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 1548–1553. IEEE (2016)Google Scholar
  15. 15.
    Gomaa, W.H., Fahmy, A.A.: A survey of text similarity approaches. Int. J. Comput. Appl. 68(13), 13–18 (2013)Google Scholar
  16. 16.
    Hart, L.E.: Introduction to model-based system engineering (MBSE) and SysML. In: Delaware Valley INCOSE Chapter Meeting, Ramblewood Country Club, Mount Laurel, New Jersey (2015)Google Scholar
  17. 17.
    Hayes, J.H., Dekhtyar, A., Osborne, J.: Improving requirements tracing via information retrieval. In: Proceedings of the 11th IEEE International Requirements Engineering Conference, pp. 138–147. IEEE (2003)Google Scholar
  18. 18.
    Lee, W.S., Grosh, D.L., Tillman, F.A., Lie, C.H.: Fault tree analysis, methods, and applications a review. IEEE Trans. Reliab. 34(3), 194–203 (1985)CrossRefzbMATHGoogle Scholar
  19. 19.
    Mahmoud, A., Niu, N.: On the role of semantics in automated requirements tracing. Requirements Eng. 20(3), 281–300 (2015)CrossRefGoogle Scholar
  20. 20.
    Martis, M.S.: Validation of simulation based models: a theoretical outlook. Electron. J. Bus. Res. Methods 4(1), 39–46 (2006)Google Scholar
  21. 21.
    Mhenni, F., Choley, J.Y., Nguyen, N.: SysML extensions for safety-critical mechatronic systems design. In: 2015 IEEE International Symposium on Systems Engineering (ISSE), pp. 242–247. IEEE (2015)Google Scholar
  22. 22.
    Müller, M., Roth, M., Lindemann, U.: The hazard analysis profile: linking safety analysis and SysML. In: 2016 Annual IEEE Systems Conference (SysCon), pp. 1–7. IEEE (2016)Google Scholar
  23. 23.
    Nejati, S., Sabetzadeh, M., Arora, C., Briand, L.C., Mandoux, F.: Automated change impact analysis between SysML models of requirements and design. In: Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp. 242–253. ACM (2016)Google Scholar
  24. 24.
    Niu, N., Wang, W., Gupta, A.: Gray links in the use of requirements traceability. In: Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp. 384–395. ACM (2016)Google Scholar
  25. 25.
    Oh, Y., Yoo, J., Cha, S., Son, H.S.: Software safety analysis of function block diagrams using fault trees. Reliab. Eng. Syst. Saf. 88(3), 215–228 (2005)CrossRefGoogle Scholar
  26. 26.
    Pedersen, T., Patwardhan, S., Michelizzi, J.: WordNet::Similarity: measuring the relatedness of concepts. In: Demonstration Papers at HLT-NAACL 2004, pp. 38–41. Association for Computational Linguistics (2004)Google Scholar
  27. 27.
    Powers, D.M.: What the f-measure doesn’t measure. Technical report, Beijing University of Technology, China & Flinders University, Australia (2014)Google Scholar
  28. 28.
    Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Sacha, K.: Automatic code generation for PLC controllers. In: Winther, R., Gran, B.A., Dahll, G. (eds.) SAFECOMP 2005. LNCS, vol. 3688, pp. 303–316. Springer, Heidelberg (2005). Scholar
  30. 30.
    Schafer, W., Wehrheim, H.: The challenges of building advanced mechatronic systems. In: Future of Software Engineering, FOSE 2007, pp. 72–84. IEEE (2007)Google Scholar
  31. 31.
    Slimani, T.: Description and evaluation of semantic similarity measures approaches. arXiv preprint arXiv:1310.8059 (2013)
  32. 32.
    Spanoudakis, G., Zisman, A.: Software traceability: a roadmap. Handb. Softw. Eng. Knowl. Eng. 3, 395–428 (2005)CrossRefGoogle Scholar
  33. 33.
    Strolia, Z., Pavalkis, S.: Building executable SysML model - automatic transmission system (part 1) (2017).
  34. 34.
    Van Lamsweerde, A., Letier, E.: Handling obstacles in goal-oriented requirements engineering. IEEE Trans. Software Eng. 26(10), 978–1005 (2000)CrossRefGoogle Scholar
  35. 35.
    Wang, W., Gupta, A., Niu, N., Xu, L., Cheng, J.R.C., Niu, Z.: Automatically tracing dependability requirements via term-based relevance feedback. IEEE Trans. Industr. Inf. 14(1), 342–349 (2018)CrossRefGoogle Scholar
  36. 36.
    Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation in Software Engineering. Springer, Berlin (2012). Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of CincinnatiCincinnatiUSA

Personalised recommendations