Group Cognition and Collaborative AI

Part of the Human–Computer Interaction Series book series (HCIS)


Significant advances in artificial intelligence suggest that we will be using intelligent agents on a regular basis in the near future. This chapter discusses group cognition as a principle for designing collaborative AI. Group cognition is the ability to relate to other group members’ decisions, abilities, and beliefs. It thereby allows participants to adapt their understanding and actions to reach common objectives. Hence, it underpins collaboration. We review two concepts in the context of group cognition that could inform the development of AI and automation in pursuit of natural collaboration with humans: conversational grounding and theory of mind. These concepts are somewhat different from those already discussed in AI research. We outline some new implications for collaborative AI, aimed at extending skills and solution spaces and at improving joint cognitive and creative capacity.


Group Knowledge Partially Observable Markov Decision Process (POMDP) Collaborative learningCollaborative Learning Interactive Machine Learning Human Robot Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement 637991).


  1. 1.
    Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning. In: Proceedings of the twenty-first international conference on Machine learning, p. 1. ACM (2004)Google Scholar
  2. 2.
    Abrams, D., Rutland, A., Palmer, S.B., Pelletier, J., Ferrell, J., Lee, S.: The role of cognitive abilities in children’s inferences about social atypicality and peer exclusion and inclusion in intergroup contexts. Br. J. Dev. Psychol. 32(3), 233–247 (2014)CrossRefGoogle Scholar
  3. 3.
    Akkerman, S., Van den Bossche, P., Admiraal, W., Gijselaers, W., Segers, M., Simons, R.J., Kirschner, P.: Reconsidering group cognition: from conceptual confusion to a boundary area between cognitive and socio-cultural perspectives? Educ. Res. Rev. 2(1), 39–63 (2007)CrossRefGoogle Scholar
  4. 4.
    Alexakos, C., Kalogeras, A.P.: Internet of things integration to a multi agent system based manufacturing environment. In: 2015 IEEE 20th Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8. IEEE (2015)Google Scholar
  5. 5.
    Allen, J., Guinn, C.I., Horvitz, E.: Mixed-initiative interaction. IEEE Intell. Syst. Appl. 14(5), 14–23 (1999)CrossRefGoogle Scholar
  6. 6.
    Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009)CrossRefGoogle Scholar
  7. 7.
    Baker, M.J.: Collaboration in collaborative learning. Interact. Stud. 16(3), 451–473 (2015)CrossRefGoogle Scholar
  8. 8.
    Baker, M., Hansen, T., Joiner, R., Traum, D.: The role of grounding in collaborative learning tasks. Collab. Learn. Cogn. Comput. Approach. 31, 63 (1999)Google Scholar
  9. 9.
    Bradáč, V., Kostolányová, K.: Intelligent tutoring systems. In: E-Learning, E-Education, and Online Training: Third International Conference, eLEOT 2016, Dublin, Ireland, August 31–September 2, 2016, Revised Selected Papers, pp. 71–78. Springer (2017)Google Scholar
  10. 10.
    Cai, Z., Wu, Q., Huang, D., Ding, L., Yu, B., Law, R., Huang, J., Fu, S.: Cognitive state recognition using wavelet singular entropy and arma entropy with afpa optimized gp classification. Neurocomputing 197, 29–44 (2016)CrossRefGoogle Scholar
  11. 11.
    Cambria, E., White, B.: Jumping nlp curves: a review of natural language processing research. IEEE Comput. Intell. Mag. 9(2), 48–57 (2014)CrossRefGoogle Scholar
  12. 12.
    Campbell, A., Wu, A.S.: Multi-agent role allocation: issues, approaches, and multiple perspectives. Auton. Agent. Multi-Agent Syst. 22(2), 317–355 (2011)CrossRefGoogle Scholar
  13. 13.
    Cannon-Bowers, J.A., Salas, E.: Reflections on shared cognition. J. Organ. Behav. 22(2), 195–202 (2001)CrossRefGoogle Scholar
  14. 14.
    Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., Elhadad, N.: Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1721–1730. ACM (2015)Google Scholar
  15. 15.
    Chandrasekaran, A., Yadav, D., Chattopadhyay, P., Prabhu, V., Parikh, D.: It takes two to tango: towards theory of ai’s mind (2017). arXiv:1704.00717
  16. 16.
    Chau, D.H., Kittur, A., Hong, J.I., Faloutsos, C.: Apolo: making sense of large network data by combining rich user interaction and machine learning. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 167–176. ACM (2011)Google Scholar
  17. 17.
    Cheng, J., Greiner, R.: Learning bayesian belief network classifiers: algorithms and system. In: Advances in artificial intelligence, pp. 141–151 (2001)CrossRefGoogle Scholar
  18. 18.
    Chrislip, D.D., Larson, C.E.: Collaborative leadership: how citizens and civic leaders can make a difference, vol. 24. Jossey-Bass Inc Pub (1994)Google Scholar
  19. 19.
    Clark, H.H., Wilkes-Gibbs, D.: Referring as a collaborative process. Cognition 22(1), 1–39 (1986)CrossRefGoogle Scholar
  20. 20.
    Clark, H.H., Brennan, S.E., et al.: Grounding in communication. Perspect. Soc. Shar. Cogn. 13(1991), 127–149 (1991)Google Scholar
  21. 21.
    Cohen, P.R., Perrault, C.R.: Elements of a plan-based theory of speech acts. Cogn. Sci. 3(3), 177–212 (1979)CrossRefGoogle Scholar
  22. 22.
    Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 20(1), 30–42 (2012)CrossRefGoogle Scholar
  23. 23.
    Dartnall, T.: Artificial intelligence and creativity: an interdisciplinary approach, vol. 17. Springer Science & Business Media (2013)Google Scholar
  24. 24.
    de Haan, M.: Intersubjectivity in models of learning and teaching: reflections from a study of teaching and learning in a mexican mazahua community. In: The theory and practice of cultural-historical psychology, pp. 174–199 (2001)Google Scholar
  25. 25.
    De Jong, K.A., Spears, W.M., Gordon, D.F.: Using genetic algorithms for concept learning. Mach. Learn. 13(2–3), 161–188 (1993)Google Scholar
  26. 26.
    Deterding, C.S., Hook, J.D., Fiebrink, R., Gow, J., Akten, M., Smith, G., Liapis, A., Compton, K.: Mixed-initiative creative interfaces (2017)Google Scholar
  27. 27.
    Dresner, K., Stone, P.: A multiagent approach to autonomous intersection management. J. Artif. Intell. Res. 31, 591–656 (2008)Google Scholar
  28. 28.
    El Kaliouby, R., Robinson, P.: Mind reading machines: automated inference of cognitive mental states from video. In: 2004 IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 682–688. IEEE (2004)Google Scholar
  29. 29.
    El Kaliouby, R., Robinson, P.: Real-time inference of complex mental states from facial expressions and head gestures. In: Real-Time Vision for Human-Computer Interaction, pp. 181–200. Springer (2005)Google Scholar
  30. 30.
  31. 31.
    Engel, D., Woolley, A.W., Jing, L.X., Chabris, C.F., Malone, T.W.: Reading the mind in the eyes or reading between the lines? Theory of mind predicts collective intelligence equally well online and face-to-face. PloS one 9(12), e115,212 (2014)CrossRefGoogle Scholar
  32. 32.
    Flavell, J.H.: Theory-of-mind development: retrospect and prospect. Merrill-Palmer Q. 50(3), 274–290 (2004)CrossRefGoogle Scholar
  33. 33.
    Fotheringham, M.J., Owies, D., Leslie, E., Owen, N.: Interactive health communication in preventive medicine: internet-based strategies in teaching and research. Am. J. Prev. Med. 19(2), 113–120 (2000)CrossRefGoogle Scholar
  34. 34.
    Fussell, S.R., Kiesler, S., Setlock, L.D., Yew, V.: How people anthropomorphize robots. In: 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 145–152. IEEE (2008)Google Scholar
  35. 35.
    Galegher, J., Kraut, R.E., Egido, C.: Intellectual Teamwork: Social and Technological Foundations of Cooperative Work. Psychology Press (2014)Google Scholar
  36. 36.
    Goldstone, R.L., Theiner, G.: The multiple, interacting levels of cognitive systems (milcs) perspective on group cognition. Philos. Psychol. 30(3), 334–368 (2017)CrossRefGoogle Scholar
  37. 37.
    Graesser, A.C., VanLehn, K., Rosé, C.P., Jordan, P.W., Harter, D.: Intelligent tutoring systems with conversational dialogue. AI Mag. 22(4), 39 (2001)Google Scholar
  38. 38.
    Gray, B.: Collaborating: Finding Common Ground for Multiparty Problems (1989)Google Scholar
  39. 39.
    Guzman, A.L.: The messages of mute machines: human-machine communication with industrial technologies. Communication+ 1 5(1), 1–30 (2016)Google Scholar
  40. 40.
    Hendricks, L.A., Akata, Z., Rohrbach, M., Donahue, J., Schiele, B., Darrell, T.: Generating visual explanations. In: European Conference on Computer Vision, pp. 3–19. Springer (2016)CrossRefGoogle Scholar
  41. 41.
    Hill, J., Ford, W.R., Farreras, I.G.: Real conversations with artificial intelligence: a comparison between human-human online conversations and human-chatbot conversations. Comput. Hum. Behav. 49, 245–250 (2015)CrossRefGoogle Scholar
  42. 42.
    Hollan, J., Hutchins, E., Kirsh, D.: Distributed cognition: toward a new foundation for human-computer interaction research. ACM Trans. Comput.-Hum. Interact. (TOCHI) 7(2), 174–196 (2000)CrossRefGoogle Scholar
  43. 43.
    Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inform. 3(2), 119–131 (2016)CrossRefGoogle Scholar
  44. 44.
    Holzinger, A., Plass, M., Holzinger, K., Crişan, G.C., Pintea, C.M., Palade, V.: Towards interactive machine learning (iml): applying ant colony algorithms to solve the traveling salesman problem with the human-in-the-loop approach. In: International Conference on Availability, Reliability, and Security, pp. 81–95. Springer (2016)Google Scholar
  45. 45.
    Hong, H.Y., Chen, F.C., Chai, C.S., Chan, W.C.: Teacher-education students views about knowledge building theory and practice. Instr. Sci. 39(4), 467–482 (2011)CrossRefGoogle Scholar
  46. 46.
    Huber, G.P., Lewis, K.: Cross-understanding: implications for group cognition and performance. Acad. Manag. Rev. 35(1), 6–26 (2010)Google Scholar
  47. 47.
    iOS Siri, A.: Apple (2013)Google Scholar
  48. 48.
    Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition (2014)Google Scholar
  49. 49.
    Karami, A.B., Jeanpierre, L., Mouaddib, A.I.: Human-robot collaboration for a shared mission. In: Proceedings of the 5th ACM/IEEE international conference on Human-robot interaction, pp. 155–156. IEEE Press (2010)Google Scholar
  50. 50.
    Kelley, R., Wigand, L., Hamilton, B., Browne, K., Nicolescu, M., Nicolescu, M.: Deep networks for predicting human intent with respect to objects. In: Proceedings of the seventh annual ACM/IEEE international conference on Human-Robot Interaction, pp. 171–172. ACM (2012)Google Scholar
  51. 51.
    Koch, J.: Design implications for designing with a collaborative ai. In: AAAI Spring Symposium Series, Designing the User Experience of Machine Learning Systems (2017)Google Scholar
  52. 52.
    Kulesza, T., Burnett, M., Wong, W.K., Stumpf, S.: Principles of explanatory debugging to personalize interactive machine learning. In: Proceedings of the 20th International Conference on Intelligent User Interfaces, pp. 126–137. ACM (2015)Google Scholar
  53. 53.
    Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through probabilistic program induction. Science 350(6266), 1332–1338 (2015)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Lala, D., Inoue, K., Milhorat, P., Kawahara, T.: Detection of social signals for recognizing engagement in human-robot interaction (2017). arXiv:1709.10257 [cs.HC]
  55. 55.
    Lang, F., Fink, A.: Collaborative machine scheduling: challenges of individually optimizing behavior. Concurr. Comput. Pract. Exp. 27(11), 2869–2888 (2015)CrossRefGoogle Scholar
  56. 56.
    Lave, J., Wenger, E.: Situated Learning: Legitimate Peripheral Participation. Cambridge university press, Cambridge (1991)Google Scholar
  57. 57.
    Lee, D., Lee, J., Kim, E.K., Lee, J.: Dialog act modeling for virtual personal assistant applications using a small volume of labeled data and domain knowledge. In: Sixteenth Annual Conference of the International Speech Communication Association (2015)Google Scholar
  58. 58.
    Lei, T., Barzilay, R., Jaakkola, T.: Rationalizing neural predictions (2016). arXiv:1606.04155
  59. 59.
    Levine, S.J., Williams, B.C.: Concurrent plan recognition and execution for human-robot teams. In: ICAPS (2014)Google Scholar
  60. 60.
    Licklider, J.C.: Man-computer symbiosis. IRE Trans. Hum. Factors Electron. 1, 4–11 (1960)CrossRefGoogle Scholar
  61. 61.
    Lipton, Z.C.: The mythos of model interpretability (2016). arXiv:1606.03490
  62. 62.
    Mavridis, N.: A review of verbal and non-verbal human-robot interactive communication. Robot. Auton. Syst. 63, 22–35 (2015)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Mohammed, S., Ringseis, E.: Cognitive diversity and consensus in group decision making: the role of inputs, processes, and outcomes. Organ. Behav. Hum. Decis. Process. 85(2), 310–335 (2001)CrossRefGoogle Scholar
  64. 64.
    Nehaniv, C.L., Dautenhahn, K., Kubacki, J., Haegele, M., Parlitz, C., Alami, R.: A methodological approach relating the classification of gesture to identification of human intent in the context of human-robot interaction. In: ROMAN 2005. IEEE International Workshop on Robot and Human Interactive Communication, 2005, pp. 371–377. IEEE (2005)Google Scholar
  65. 65.
    Novak, J.: Mine, yours... ours? Designing for principal-agent collaboration in interactive value creation. Wirtschaftsinformatik 1, 305–314 (2009)Google Scholar
  66. 66.
    Oliver, N.M., Rosario, B., Pentland, A.P.: A bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 831–843 (2000)CrossRefGoogle Scholar
  67. 67.
    Pantic, M., Pentland, A., Nijholt, A., Huang, T.S.: Human computing and machine understanding of human behavior: a survey. In: Artifical Intelligence for Human Computing, pp. 47–71. Springer (2007)Google Scholar
  68. 68.
    Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM (2016)Google Scholar
  69. 69.
    Rich, C., Ponsler, B., Holroyd, A., Sidner, C.L.: Recognizing engagement in human-robot interaction. In: 2010 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 375–382. IEEE (2010)Google Scholar
  70. 70.
    Robert, S., Büttner, S., Röcker, C., Holzinger, A.: Reasoning under uncertainty: towards collaborative interactive machine learning. In: Machine Learning for Health Informatics, pp. 357–376. Springer (2016)Google Scholar
  71. 71.
    Robinson, T.N., Patrick, K., Eng, T.R., Gustafson, D., et al.: An evidence-based approach to interactive health communication: a challenge to medicine in the information age. JAMA 280(14), 1264–1269 (1998)CrossRefGoogle Scholar
  72. 72.
    Roschelle, J., Teasley, S.D., et al.: The construction of shared knowledge in collaborative problem solving. Comput.-Support. Collab. Learn. 128, 69–197 (1995)Google Scholar
  73. 73.
    Ruttkay, Z., Reidsma, D., Nijholt, A.: Human computing, virtual humans and artificial imperfection. In: Proceedings of the 8th international conference on Multimodal interfaces, pp. 179–184. ACM (2006)Google Scholar
  74. 74.
    Sato, E., Yamaguchi, T., Harashima, F.: Natural interface using pointing behavior for human-robot gestural interaction. IEEE Trans. Industr. Electron. 54(2), 1105–1112 (2007)CrossRefGoogle Scholar
  75. 75.
    Schurr, N., Marecki, J., Tambe, M., Scerri, P., Kasinadhuni, N., Lewis, J.P.: The future of disaster response: humans working with multiagent teams using defacto. In: AAAI Spring Symposium: AI Technologies for Homeland Security, pp. 9–16 (2005)Google Scholar
  76. 76.
    Shapiro, D., Shachter, R.: User-agent value alignment. In: Proceedings of The 18th National Conference on Artificial Intelligence AAAI (2002)Google Scholar
  77. 77.
    Sheridan, T.B.: Human-robot interaction: status and challenges. Hum. Factors 58(4), 525–532 (2016)CrossRefGoogle Scholar
  78. 78.
    Shoham, Y., Leyton-Brown, K.: Multiagent systems: Algorithmic, game-theoretic, and logical foundations. Cambridge University Press, Cambridge (2008)Google Scholar
  79. 79.
    Sidner, C.L., Lee, C., Morency, L.P., Forlines, C.: The effect of head-nod recognition in human-robot conversation. In: Proceedings of the 1st ACM SIGCHI/SIGART conference on Human-robot interaction, pp. 290–296. ACM (2006)Google Scholar
  80. 80.
    Simard, P., Chickering, D., Lakshmiratan, A., Charles, D., Bottou, L., Suarez, C.G.J., Grangier, D., Amershi, S., Verwey, J., Suh, J.: Ice: enabling non-experts to build models interactively for large-scale lopsided problems (2014). arXiv:1409.4814
  81. 81.
    Soller, A.: Supporting social interaction in an intelligent collaborative learning system. Int. J. Artif. Intell. Educ. (IJAIED) 12, 40–62 (2001)Google Scholar
  82. 82.
    Stahl, G.: Shared meaning, common ground, group cognition. In: Group Cognition: Computer Support for Building Collaborative Knowledge, pp. 347–360 (2006)Google Scholar
  83. 83.
    Stahl, G.: From intersubjectivity to group cognition. Comput. Support. Coop. Work (CSCW) 25(4–5), 355–384 (2016)CrossRefGoogle Scholar
  84. 84.
    Stone, P., Veloso, M.: Multiagent systems: a survey from a machine learning perspective. Auton. Robots 8(3), 345–383 (2000)CrossRefGoogle Scholar
  85. 85.
    Taha, T., Miró, J.V., Dissanayake, G.: A pomdp framework for modelling human interaction with assistive robots. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 544–549. IEEE (2011)Google Scholar
  86. 86.
    Theiner, G., Allen, C., Goldstone, R.L.: Recognizing group cognition. Cogn. Syst. Res. 11(4), 378–395 (2010)CrossRefGoogle Scholar
  87. 87.
    Turner, P.: Mediated Cognition. Springer International Publishing, Cham (2016)CrossRefGoogle Scholar
  88. 88.
    Vondrick, C., Oktay, D., Pirsiavash, H., Torralba, A.: Predicting motivations of actions by leveraging text. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2997–3005 (2016)Google Scholar
  89. 89.
    Vondrick, C., Pirsiavash, H., Torralba, A.: Anticipating visual representations from unlabeled video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 98–106 (2016)Google Scholar
  90. 90.
    Wenger, E.: Artificial Intelligence and Tutoring Systems: Computational and Cognitive Approaches to the Communication of Knowledge. Morgan Kaufmann (2014)Google Scholar
  91. 91.
    Wood, D.J., Gray, B.: Toward a comprehensive theory of collaboration. J. Appl. Behav. Sci. 27(2), 139–162 (1991)CrossRefGoogle Scholar
  92. 92.
    Woolf, B.P.: Building Intelligent Interactive Tutors: Student-Centered Strategies for Revolutionizing e-Learning. Morgan Kaufmann (2010)Google Scholar
  93. 93.
    Yoshikawa, Y., Shinozawa, K., Ishiguro, H., Hagita, N., Miyamoto, T.: Responsive robot gaze to interaction partner. In: Robotics: Science and Systems (2006)Google Scholar
  94. 94.
    Yu, Z., Ramanarayanan, V., Lange, P., Suendermann-Oeft, D.: An open-source dialog system with real-time engagement tracking for job interview training applications. In: Proceedings of IWSDS (2017)Google Scholar
  95. 95.
    Zhang, S., Sridharan, M.: Active visual sensing and collaboration on mobile robots using hierarchical pomdps. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems-Volume 1, pp. 181–188. International Foundation for Autonomous Agents and Multiagent Systems (2012)Google Scholar
  96. 96.
    Zhou, J., Chen, F.: Making machine learning useable. Int. J. Intell. Syst. Technol. Appl. 14(2), 91–109 (2015)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Communications and Networking, School of Electrical EngineeringAalto UniversityEspooFinland

Personalised recommendations