Advertisement

Systematic Strategies

  • Saeid Kadkhodaei
  • Farahnaz Sadat Golestan Hashemi
  • Morvarid Akhavan Rezaei
  • Sahar Abbasiliasi
  • Joo Shun Tan
  • Hamid Rajabi Memari
  • Faruku Bande
  • Ali Baradaran
  • Mahdi Moradpour
  • Arbakariya B. Ariff
Chapter
Part of the SpringerBriefs in Systems Biology book series (BRIEFSBIOSYS)

Abstract

This section outlines efficient stepwise procedures for analyzing the matrix attachment regions (MARs), translation initiation sites (TIS), signal peptide (SP) sequences, gene optimization, and transformation systems. The strategies initially include data mining (DNA, RNA, and protein for MARs, TIS, and SP, respectively) and screening for the validated data. The in silico process for MARs exploration comprises motif search and comparison in databases, correlation analysis, design, and evaluation of an artificial MAR sequence. Investigation on TIS is carried out based on the statistical evaluation of the nucleotide occurrence variation around the ATG (translation initiation) site. Various programs are available to predict signal peptide sequences throughout the genome, among which SignalP is preferred in terms of performance comparing other similar programs. For gene optimization, in addition to codon preference, the mRNA secondary structures are also evaluated. Finally, the transformation procedures and efficiency of different methods are discussed.

Keywords

S/MARs TIS SP Gene optimization 

References

  1. 1.
    Chou K-C, Shen H-B (2007) Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides. Biochem Biophys Res Commun 357:633–640.  https://doi.org/10.1016/j.bbrc.2007.03.162CrossRefPubMedGoogle Scholar
  2. 2.
    Gomi M, Sonoyama M, Mitaku S (2004) High performance system for signal peptide prediction: SOSUIsignal. Chem-Bio Inform J 4:142–147.  https://doi.org/10.1273/cbij.4.142CrossRefGoogle Scholar
  3. 3.
    Kadkhodaei S, Memari HRHR, Abbasiliasi S, Rezaei MAMA, Movahedi A, Shun TJTJ, Bin Ariff A (2016) Multiple overlap extension PCR (MOE-PCR): an effective technical shortcut to high throughput synthetic biology. RSC Adv 6:66682–66694.  https://doi.org/10.1039/C6RA13172GCrossRefGoogle Scholar
  4. 4.
    Kadkhodaei S, Nekouei MK, Shahnazari M, Etminani H, Imani A, Ghaderi-Zefrehei M, Elahy M, Ariff AB (2011) Molecular tagging of agronomic traits using simple sequence repeats: Informative markers for almond (Prunus dulcis) molecular breeding. Aust J Crop Sci 5:1199–1209Google Scholar
  5. 5.
    Liebich I (2002) S/MARt DB: a database on scaffold/matrix attached regions. Nucleic Acids Res 30:372–374.  https://doi.org/10.1093/nar/30.1.372CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786.  https://doi.org/10.1038/nmeth.1701CrossRefPubMedGoogle Scholar
  7. 7.
    R Core Team (2014) R: a language and environment for statistical computing. R Found Stat Comput Vienna, Austria. URL http://www.R-project.org/
  8. 8.
    Reynolds SM, Käll L, Riffle ME, Bilmes JA, Noble WS (2008) Transmembrane topology and signal peptide prediction using dynamic bayesian networks. PLoS Comput Biol 4:e1000213.  https://doi.org/10.1371/journal.pcbi.1000213CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Shen H-B, Chou K-C (2007) Signal-3L: A 3-layer approach for predicting signal peptides. Biochem Biophys Res Commun 363:297–303.  https://doi.org/10.1016/j.bbrc.2007.08.140CrossRefPubMedGoogle Scholar
  10. 10.
    Viklund H, Bernsel A, Skwark M, Elofsson A (2008) SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology. Bioinformatics 24:2928–2929.  https://doi.org/10.1093/bioinformatics/btn550CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Saeid Kadkhodaei
    • 1
  • Farahnaz Sadat Golestan Hashemi
    • 2
  • Morvarid Akhavan Rezaei
    • 3
  • Sahar Abbasiliasi
    • 4
  • Joo Shun Tan
    • 5
  • Hamid Rajabi Memari
    • 6
  • Faruku Bande
    • 7
  • Ali Baradaran
    • 8
    • 9
  • Mahdi Moradpour
    • 10
  • Arbakariya B. Ariff
    • 11
  1. 1.Research Institute for Biotechnology and BioengineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Plant Genetics, AgroBioChem Department, Gembloux Agro-Bio TechUniversity of LiègeLiègeBelgium
  3. 3.Tropical Infectious Diseases Research and Education Centre (TIDREC), Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
  4. 4.Halal Products Research InstituteUniversiti Putra MalaysiaSeri KembanganMalaysia
  5. 5.Bioprocess Technology, School of Industrial TechnologyUniversiti Sains MalaysiaGeorge Town, PenangMalaysia
  6. 6.SynHiTechThornhillCanada
  7. 7.Department of Veterinary Services, Ministry of Animal Health and Fisheries DevelopmentUsman Faruk Secretariat, SokotoSokotoNigeria
  8. 8.Mater ResearchTranslational Research InstituteWoolloongabbaAustralia
  9. 9.Faculty of Medicine, Translational Research Institute, Diamantina InstituteUniversity of QueenslandBrisbaneAustralia
  10. 10.Institute of plantation studiesUniversiti Putra MalaysiaSeri KembanganMalaysia
  11. 11.Faculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaSeri KembanganMalaysia

Personalised recommendations