Skip to main content

Translation of CUD Therapeutics from Drug Discovery to the Clinic

  • Chapter
  • First Online:
Cannabis Use Disorders

Abstract

The first part of this chapter will outline the typical designs used in modern drug discovery programs, starting with initial hit discovery and leading up to the point that FDA permits “first-in-human” testing. It is intended that this outline will provide insight into the different skill sets and ways of thinking and working that are needed to bring a new medication to the clinic. The purpose is not only to provide basic scientists with a view from the “other side” but also to convey the complexities involved in drug development projects, as a way of explaining why it takes so long to get from initial discovery to clinical testing. Having covered some of the considerations of the drug development process, the second half of the chapter will discuss experimental approaches used to date to treat cannabis use disorder (CUD) as well as a brief history of cannabinoid pharmacology (and physiology). It is hoped that these factors may clarify where we have come from, why it has taken so long, and the direction forward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levin FR, et al. Dronabinol for the treatment of cannabis dependence: a randomized, double-blind, placebo-controlled trial. Drug Alcohol Depend. 2011;116(1–3):142–50.

    Article  CAS  Google Scholar 

  2. Haney M, et al. Nabilone decreases marijuana withdrawal and a laboratory measure of marijuana relapse. Neuropsychopharmacology. 2013;38(8):1557–65.

    Article  CAS  Google Scholar 

  3. Oh DA, et al. Effect of food on the pharmacokinetics of dronabinol oral solution versus dronabinol capsules in healthy volunteers. Clin Pharmacol. 2017;9:9–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tsvetanova NG, von Zastrow M. Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis. Nat Chem Biol. 2014;10(12):1061–5.

    Article  CAS  Google Scholar 

  5. Schuetz DA, de Witte WEA, Wong YC, Knasmueller B, Richter L, Kokh DB, Sadiq SK, Bosma R, Nederpelt I, Heitman LH, Segala E, Amaral M, Guo D, Andres D, Georgi V, Stoddart LA, Hill S, Cooke RM, De Graaf C, Leurs R, Frech M, Wade RC, de Lange ECM, IJzerman AP, Müller-Fahrnow A, Ecker GF. Kinetics for Drug Discovery: an industry-driven effort to target drug residence time. Drug Discov Today. 2017;22(6):896–9.

    Article  CAS  Google Scholar 

  6. Kenakin T. Signaling bias in drug discovery. Expert Opin Drug Discov. 2017;12(4):321–33.

    Article  CAS  Google Scholar 

  7. Masuho I, Ostrovskaya O, Kramer GM, Jones CD,Xie K, Martemyanov KA. Distinct profiles of functional discrimination among G proteins determine the actions of G protein-coupled receptors. www.SCIENCESIGNALING.org. 2015;8(405):ra123.

    Article  Google Scholar 

  8. Carr R, Schilling J, Song J, Carter RL, Du Y, Yoo SM, Traynham CJ, Koch WJ, Cheung JY, Tilley DG, Benovic JL. β-arrestin-biased signaling through the β2-adrenergic receptor promotes cardiomyocyte contraction. Proc Natl Acad Sci U S A. 2016;113(28):E4107–16.

    Article  Google Scholar 

  9. Schmid CL, et al. Bias factor and therapeutic window correlate to predict safer opioid analgesics. Cell. 2017;171(5):1165–1175.e13.

    Article  CAS  Google Scholar 

  10. Tseng AH, Craft RM. Sex differences in antinociceptive and motoric effects of cannabinoids. Eur J Pharmacol. 2001;430(1):41–7.

    Article  CAS  Google Scholar 

  11. Kleczkowska P, et al. Are alcohol anti-relapsing and alcohol withdrawal drugs useful in cannabinoid users? Neurotox Res. 2016;30(4):698–714.

    Article  CAS  Google Scholar 

  12. Haney M, et al. Naltrexone maintenance decreases Cannabis self-administration and subjective effects in daily Cannabis smokers. Neuropsychopharmacology. 2015;40(11):2489–98.

    Article  CAS  Google Scholar 

  13. Ramo DE, et al. Alcohol and drug use, pain and psychiatric symptoms among adults seeking outpatient psychiatric treatment: latent class patterns and relationship to health status. J Psychoactive Drugs. 2017:1–11.

    Google Scholar 

  14. Allsop DJ, et al. The Cannabis withdrawal scale development: patterns and predictors of cannabis withdrawal and distress. Drug Alcohol Depend. 2011;119(1–2):123–9.

    Article  Google Scholar 

  15. Marshall K, et al. Pharmacotherapies for cannabis dependence. Cochrane Database Syst Rev. 2014;12. https://doi.org/10.1002/14651858.CD008940.pub2.

  16. Sertuerner. Ueber das Morphium, eine neue salzfähige Grundlage, und dieMekonsäure, als Hauptbestandtheile des Opiums. Ann Phys. 1817;55:56–89.

    Article  Google Scholar 

  17. Hamilton GR, Baskett TF. In the arms of morpheus: the development of morphine for postoperative pain relief. Can J Anesth. 2000;47(4):367–74.

    Article  CAS  Google Scholar 

  18. Abel EL. The Hashish Club. In: Marihuana: the first twelve thousand years. Boston: Springer US; 1980. p. 148–70.

    Chapter  Google Scholar 

  19. Moreau JJ. Du Hachisch Et de L'Aliénation Mentale: Études Psychologiques. 1845: BiblioBazaar.

    Google Scholar 

  20. O’Shaughnessy WB. On the preparations of the Indian Hemp, or Gunjah: Cannabis Indica their effects on the animal system in health, and their utility in the treatment of tetanus and other convulsive diseases. Provincial Med J Retrospect Med Sci. 1843;5(123):363–9.

    Google Scholar 

  21. Gaoni Y, Mechoulam R. Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc. 1964;86(8):1646–7.

    Article  CAS  Google Scholar 

  22. Pert CB, Snyder SH. Opiate receptor: demonstration in nervous tissue. Science. 1973;179(4077):1011–4.

    Article  CAS  Google Scholar 

  23. Furchgott RF. Pharmacological characterization of receptors: its relation to radioligand-binding studies. Fed Proc. 1978;37(2):115–20.

    CAS  PubMed  Google Scholar 

  24. Snyder SH, Pasternak GW. Historical review: opioid receptors. Trends Pharmacol Sci. 2003;24(4):198–205.

    Article  CAS  Google Scholar 

  25. Devane WA, et al. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol. 1988;34(5):605–13.

    CAS  Google Scholar 

  26. Devane WA, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258(5090):1946–9.

    Article  CAS  Google Scholar 

  27. Mechoulam R, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995;50(1):83–90.

    Article  CAS  Google Scholar 

  28. Deutsch DG, Chin SA. Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochem Pharmacol. 1993;46(5):791–6.

    Article  CAS  Google Scholar 

  29. Rinaldi-Carmona M, et al. SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett. 1994;350(2–3):240–4.

    Article  CAS  Google Scholar 

  30. Tsou K, Patrick SL, Walker JM. Physical withdrawal in rats tolerant to delta 9-tetrahydrocannabinol precipitated by a cannabinoid receptor antagonist. Eur J Pharmacol. 1995;280(3):R13–5.

    Article  CAS  Google Scholar 

  31. Tanda G. Preclinical studies on the reinforcing effects of cannabinoids. A tribute to the scientific research of Dr. Steve Goldberg. Psychopharmacology. 2016;233(10):1845–66.

    Article  CAS  Google Scholar 

  32. Alger BE, Pitler TA. Retrograde signaling at GABAA-receptor synapses in the mammalian CNS. Trends Neurosci. 1995;18(8):333–40.

    Article  CAS  Google Scholar 

  33. Kano M. Control of synaptic function by endocannabinoid-mediated retrograde signaling. Proc Jpn Acad Ser B Phys Biol Sci. 2014;90(7):235–50.

    Article  CAS  Google Scholar 

  34. Ohno-Shosaku T, et al. Endocannabinoids and retrograde modulation of synaptic transmission. Neuroscientist. 2012;18(2):119–32.

    Article  CAS  Google Scholar 

  35. Castillo PE, et al. Endocannabinoid signaling and synaptic function. Neuron. 2012;76(1):70–81.

    Article  CAS  Google Scholar 

  36. Hillard CJ, Beatka M, Sarvaideo J. Endocannabinoid signaling and the hypothalamic-pituitary-adrenal axis. Compr Physiol. 2016;7(1):1–15.

    PubMed  PubMed Central  Google Scholar 

  37. Stern CAJ, et al. Effects of cannabinoid drugs on aversive or rewarding drug-associated memory extinction and reconsolidation. Neuroscience. 2017.

    Google Scholar 

  38. Katona I, Freund TF. Multiple functions of endocannabinoid signaling in the brain. Annu Rev Neurosci. 2012;35:529–58.

    Article  CAS  Google Scholar 

  39. Vallee M, et al. Pregnenolone can protect the brain from cannabis intoxication. Science. 2014;343(6166):94–8.

    Article  CAS  Google Scholar 

  40. Ford BM, et al. Characterization of structurally novel G protein biased CB1 agonists: Implications for drug development. Pharmacol Res. 2017;125(Pt B):161–77.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aidan J. Hampson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hampson, A.J., Walsh, R.L. (2019). Translation of CUD Therapeutics from Drug Discovery to the Clinic. In: Montoya, I., Weiss, S. (eds) Cannabis Use Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-90365-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90365-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90364-4

  • Online ISBN: 978-3-319-90365-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics