Skip to main content

Nanoparticle Fabrication

  • Chapter
  • First Online:
Nanopackaging
  • 2096 Accesses

Abstract

A wide variety of fabrication processes for nanoparticles and related materials has been developed for the last several decades. Cost-effective and environmentally conscious production of nanomaterials is necessary to establish the nanopackaging technology. In addition, shape-controlled synthesis of nanomaterials such as nanorods and nanowires is also important for developing advanced electronic devices. In this chapter, fundamentals and applications of physical and chemical processes are reviewed to understand recent progress in the industrial production for metal nanoparticles and related materials. This chapter also describes utilization of the nanomaterials for preparing electric wires, electrodes, and interconnects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mulvaney P (2001) Not all that’s gold does glitter. MRS Bull 26(12):1009–1014

    Article  CAS  Google Scholar 

  2. Tanaka T et al (2004) Thermodynamics of the nano-sized particles. In: Letcher TM (ed) Chemical thermodynamics for industry. The Royal Society of Chemistry, London, pp 209–218

    Google Scholar 

  3. (a) Pawlow P (1909) Über die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers. Z Phys Chem 65:1–35, (b) Pawlow P (1909) Über die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers (Zusatz). Z Phys Chem 65:545–548

    Google Scholar 

  4. Takagi M (1954) Electron-diffraction study of liquid-solid transition of thin metal films. J Phys Soc Jpn 9:359–363

    Article  Google Scholar 

  5. Couchman PR, Jesser WA (1977) Thermodynamic theory of size dependence of melting temperature in metals. Nature 269:481–483

    Article  CAS  Google Scholar 

  6. Suganuma K (ed) (2006) Ink-jet wiring of fine pitch circuits with metallic nano particle pastes. CMC Publishing CO., LTD, Tokyo

    Google Scholar 

  7. Jiang H et al (2013) Recent advances of nanolead-free solder material for low processing temperature interconnect applications. Microelectron Reliab 53:1968–1978

    Article  CAS  Google Scholar 

  8. Sun S et al (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992

    Article  CAS  Google Scholar 

  9. Kashchiev D (2000) Nucleation. Basic theory with applications. Butterworth-Heinemann, Woburn

    Google Scholar 

  10. Lewis B, Anderson JC (1978) Nucleation and growth of thin films. Academic, New York

    Google Scholar 

  11. Clouet E (2009) Modeling of nucleation process. In: Furrer DU, Semiatin SL (eds) ASM handbook, vol 22A. Fundamentals of modeling for metals processing. ASM International, Materials Park, pp 203–219

    Google Scholar 

  12. Sear RP (2007) Nucleation: theory and applications to protein solutions and colloidal suspensions. J Phys Condens Matter 19:033101

    Article  Google Scholar 

  13. Stoyanov S (1973) On the atomistic theory of nucleation rate. Thin Solid Films 18:91–98

    Article  CAS  Google Scholar 

  14. Oda M (2002) Metal nano-particles. J Jpn Inst Electron Packag 5:523–528

    Article  CAS  Google Scholar 

  15. Antony LVM, Reddy RG (2003) Processes for production of high-purity metal powders. JOM 55(3):14–18

    Article  CAS  Google Scholar 

  16. Shigeta M, Murphy AB (2011) Thermal plasmas for nanofabrication. J Phys D Appl Phys 44:174025

    Article  Google Scholar 

  17. Shigeta M, Nishiyama H (2005) Numerical analysis of metallic nanoparticles synthesis using RF inductively coupled plasma flows. J Heat Trans 127:1222–1230

    Article  CAS  Google Scholar 

  18. Ostrikov JK, Murphy AB (2007) Plasma-aided nanofabrication: where is the cutting edge? J Phys D Appl Phys 40:2223–2241

    Article  CAS  Google Scholar 

  19. Haidar J (2009) Synthesis of Al nanopowders in an anodic arc. Plasma Chem Plasma Process 29:307–319

    Article  CAS  Google Scholar 

  20. Barankin MD et al (2006) Synthesis of nanoparticles in an atmospheric pressure glow discharge. J Nanopart Res 8:511–517

    Article  CAS  Google Scholar 

  21. Zihlmann S (2014) Seeded growth of monodisperse and spherical silver nanoparticles. J Aerosol Sci 75:81–93

    Article  CAS  Google Scholar 

  22. Smith DL (1995) Thin-film deposition, principles & practice. McGraw-Hill, Boston

    Google Scholar 

  23. Koinuma H et al (1997) Laser MBE of ceramic thin film for future electronics. Appl Surf Sci 109:514–519

    Article  Google Scholar 

  24. Reiner JW et al (2010) Crystalline oxides on silicon. Adv Mater 22:2912–2938

    Google Scholar 

  25. Hwang HY et al (2012) Emergent phenomena at oxide interfaces. Nat Mater 11:103–113

    Article  CAS  Google Scholar 

  26. Morris JE, Coutts TJ (1977) Electrical-conduction in discontinuous metal-films – discussion. Thin Solid Films 47:3–65

    Article  Google Scholar 

  27. Morris JE (1998) Recent developments in discontinuous metal thin film devices. Vacuum 50:107–103

    Article  CAS  Google Scholar 

  28. Wei H, Eilers H (2009) From silver nanoparticles to thin films: evolution of microstructure and electrical conduction on glass substrates. J Phys Chem Solids 70:459–465

    Article  CAS  Google Scholar 

  29. Eaglesham DJ, Cerullo M (1990) Dislocation-free Stranski-Krastanow growth of Ge on Si(100). Phys Rev Lett 64:1943–1946

    Article  CAS  Google Scholar 

  30. Bhattachaya P et al (2004) Quantum dot opto-electronic devices. Annu Rev Mater Res 34:1–40

    Article  Google Scholar 

  31. Akahane K et al (2002) Fabrication of ultra-high density InAs-stacked quantum dots by strain-controlled growth on InP(311)B substrate. J Cryst Growth 245:31–36

    Article  CAS  Google Scholar 

  32. Harrison P (2005) Quantum wells, wires and dots, 2nd edn. Wiley, West Sussex

    Book  Google Scholar 

  33. LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854

    Article  CAS  Google Scholar 

  34. Abe K et al (1998) Two dimensional array of silver nanoparticles. Thin Solid Films 327–329:524–527

    Article  Google Scholar 

  35. Yamamoto M, Nakamoto M (2004) A new approach for the Au/Ag alloy nanoparticle formation through the reduction of Ag(I) to Ag(0) by amine and intermetallic electron transfer from Ag(0) to gold(I) complex. Chem Lett 33:1340–1341

    Article  CAS  Google Scholar 

  36. Ito M et al (2009) Direct transformation into silver nanoparticles via thermal decomposition of oxalate-bridging silver oleylamine. J Nanosci Nanotechnol 9:6655–6660

    Article  Google Scholar 

  37. Fukuda K et al (2012) Organic integrated circuits using room-temperature sintered silver nanoparticles as printed electrodes. Org Electron 13:3296–3301

    Article  CAS  Google Scholar 

  38. Hirose K et al (2012) Low temperature wiring technology with silver β-ketocarboxylate. IEICE Trans Electron (Jpn Ed) J95-C:394–399

    Google Scholar 

  39. Hayashi Y et al (2005) Ecodesigns and applications for noble metal nanoparticles by ultrasound process. IEEE Trans Electron Packag Manuf 28:338–343

    Article  CAS  Google Scholar 

  40. Hayashi Y, Niihara K (2004) Ceramics nanocomposite. Eng Mater Des 52:50–51

    CAS  Google Scholar 

  41. Hayashi Y (2014) Fabrication of nano and micro material by ultrasonic and microwave excited reaction fields. Mater Jpn 53:541–545

    Article  Google Scholar 

  42. West AR (1984) Basic solid state chemistry. Wiley, New York

    Google Scholar 

  43. Mizuta S, Koumoto K (1996) Materials science for ceramics. University of Tokyo Press, Tokyo

    Google Scholar 

  44. Hayashi Y et al (1999) Mechanical and electrical properties of ZnO/Ag nanocomposites. In: Singh JP et al (eds) Advances in ceramic matrix composites IV: ceramic transaction, vol 96. American Ceramic Society, Westerville, pp 209–218

    Google Scholar 

  45. Crum LA (1995) Bubbles hotter than the sun. New Sci 146:36–40

    Google Scholar 

  46. Luce JL (1994) Effect of ultrasound on heterogeneous systems. Ultrason Sonochem 1:S111–S118

    Article  Google Scholar 

  47. Suslick KS (1990) Sonochemistry. Science 247:1439–1445

    Article  CAS  Google Scholar 

  48. Suslick KS, Price GJ (1999) Applications of ultrasound to materials chemistry. Annu Rev Mater Sci 29:295–326

    Article  CAS  Google Scholar 

  49. Inoue M et al (2010) Formation mechanism of nanostructured Ag films from Ag2O particles using a sonoprocess. Colloid Polym Sci 288:1061–1069

    Article  CAS  Google Scholar 

  50. Hayashi Y, Takizawa H (2014) Metal nanoparticle fabrication by ultrasound and microwave reactors in solid-liquid system. Catal Catal (Catal Soc Jpn) 56:41–47

    Google Scholar 

  51. Fievet F et al (1989) Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics 32/33:198–205

    Article  Google Scholar 

  52. Xia Y et al (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103

    Article  CAS  Google Scholar 

  53. Jiu J et al (2014) Facile synthesis of very-long silver nanowires for transparent electrodes. J Mater Chem A 2:6326–6330

    Article  CAS  Google Scholar 

  54. Jiu J et al (2012) Strong adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique. J Mater Chem 22:23561–23567

    Article  CAS  Google Scholar 

  55. Pileni MP (1993) Reverse micelles as microreactors. J Phys Chem 97:6961–6973

    Article  CAS  Google Scholar 

  56. Eastoe J et al (2006) Recent advances in nanoparticle synthesis with reversed micelles. Adv Colloid Interf Sci 128–130:5–15

    Article  Google Scholar 

  57. Pileni MP (2003) Nanocrystals: fabrication, organization and collective properties. C R Chim 6:965–978

    Article  CAS  Google Scholar 

  58. Sun W et al (2014) Casting inorganic structures with DNA molds. Science 346:1258361

    Article  Google Scholar 

  59. Sugawara K et al (2015) Facile synthesis of silver-nanobeadwire transparent conductive film by organic-precursor paint reduction. Cryst Res Technol 50:319–330

    Article  CAS  Google Scholar 

  60. Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Elsevier, Burlington

    Google Scholar 

  61. Ninham BW (1999) On progress in forces since the DLVO theory. Adv Colloid Interf Sci 83:1–17

    Article  CAS  Google Scholar 

  62. Iwama S, Hayakawa K (1981) Sintering of ultrafine metal powders. 2. Neck growth stage of Au, Ag, Al, Cu. Jpn J Appl Phys 20:335–340

    Article  CAS  Google Scholar 

  63. Wakuda D et al (2007) Novel method for room temperature sintering of Ag nanoparticle paste in air. Chem Phys Lett 441:305–308

    Article  CAS  Google Scholar 

  64. Stranick SJ et al (1994) A new mechanism for surface diffusion: motion of a substrate-adsorbate complex. J Phys Chem 98:11136–11142

    Article  CAS  Google Scholar 

  65. Kanehara K et al (2008) Gold(0) porphyrins on gold nanoparticles. Angew Chem Int Ed 47:307–310

    Article  CAS  Google Scholar 

  66. Renn MJ et al (2010) Aerosol jet printing of high density, 3-D interconnects for multi-chip packaging. IMAPS. 2010, Phoenix

    Google Scholar 

  67. Mahajan A et al (2013) Optimization of aerosol jet printing for high-resolution, high-aspect ratio silver lines. ACS Appl Mater Interfaces 5:4856–4864

    Article  CAS  Google Scholar 

  68. Byeon JH, Kim J-W (2010) Fabrication of a pure, uniform electroless silver film using ultrafine silver aerosol particles. Langmuir 26:11928–11933

    Article  CAS  Google Scholar 

  69. Byeon JH, Roberts JT (2012) ACS Appl Mater Interfaces 4:2515–2520

    Article  CAS  Google Scholar 

  70. Byeon JH et al (2015) An aerosol-based soft lithography to fabricate nanoscale silver dots and rings for spectroscopic applications. Nanoscale 7:2271–2275

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Special thanks to Dr. J. Jiu (Institute of Scientific and Industrial Research, Osaka University, Japan) for valuable discussions and helpful cooperation for the preparation of the contents about polyol process in Sect. 7.5.4.

The content of Sect. 7.5.3 was supported by the Industrial Technology Research Grant Program, 2005, through the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Inoue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Inoue, M., Hayashi, Y., Takizawa, H., Suganuma, K. (2018). Nanoparticle Fabrication. In: Morris, J. (eds) Nanopackaging. Springer, Cham. https://doi.org/10.1007/978-3-319-90362-0_7

Download citation

Publish with us

Policies and ethics