Skip to main content

Nanoparticle Properties

  • Chapter
  • First Online:
Nanopackaging

Abstract

As the radius, r, of a spherical particle shrinks, the surface/volume ratio, 3/r, and the proportion of its constituent atoms at the surface both increase. The stable interatomic bonding arrangements which exist within large crystals are not satisfied for surface atoms, which therefore become more mobile and more reactive, and nanoparticle properties become dominated by surface properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tian C, Mao B, Wang E, Kang Z, Song Y, Wang C, Xu L (2007) One-step, size-controllable synthesis of stable Ag nanoparticles. Nanotechnology 18:285607

    Article  Google Scholar 

  2. Morris JE (1972) Structure and electrical properties of Au-SiO thin film cermets. Thin Solid Films 11:299–311

    Article  CAS  Google Scholar 

  3. Kiesow A, Morris JE, Radehaus C, Heilmann A (2003) Switching behavior of plasma polymer films containing silver nanoparticles. J Appl Phys 94:6988–6990

    Article  CAS  Google Scholar 

  4. Morris JE, Coutts TJ (1977) Electrical conduction inn discontinuous metal films; a discussion. Thin Solid Films 47:3–65

    Article  Google Scholar 

  5. Neugebauer CA (1970) In: Maissel LI, Glang R (eds) Handbook of thin film technology. McGraw-Hill, New York

    Google Scholar 

  6. Komnik YF, Pilipenko VV, Yatsuk LA (1978) Changes in lattice spacings in bismuth and zinc island films. Thin Solid Films 52:313–327

    Article  CAS  Google Scholar 

  7. Mishra YK, Mohapatra S, Avasthi DK, Kabiraj D, Lalla NP, Pivin JC, Sharma H, Kar R, Singh N (2007) Gold-silica nanocomposites for the detection of human ovarian cancer cells: a preliminary study. Nanotechnology 18:345606

    Article  Google Scholar 

  8. Pothukuchi S, Li Y, Wong CP (2004) Shape controlled synthesis of nanoparticles, and their incorporation into polymers. In: Proceedings of 54th Electronic Components and Technology conference (ECTC), Las Vegas, pp 1965–1967. s41p15

    Google Scholar 

  9. Mościcki A, Smolarek A, Felba J Fałat T(2011) Influence of different type protective layer on silver metallic nanoparticles for Ink-Jet printing technique. In: Proceedings of 18th European Microelectronics and Packaging Conference (EMPC), Brighton

    Google Scholar 

  10. Morris JE (1972) Non-ohmic properties of discontinuous thin metal films. Thin Solid Films 11:81–89

    Article  CAS  Google Scholar 

  11. Norrman S, Andersson T, Granqvist CG (1978) Optical properties of discontinuous gold films. Phys Rev B 18(2):674–695

    Article  CAS  Google Scholar 

  12. Hill RM (1966) J Appl Phys 37:4590

    Article  Google Scholar 

  13. Smith DJ, Petford-Long AK, Wallenberg LR, Bovin J-O (1986) Dynamic atomic-level rearrangements in small gold particles. Science 233:872–875

    Article  CAS  Google Scholar 

  14. Poole CP, Owens FJ (2003) Introduction to nanotechnology. Wiley, New York, p 86

    Google Scholar 

  15. Fukano Y, Wayman CM (1969) Shapes of nuclei of evaporated fcc metals. J Appl Phys 40(4):1656–1664

    Article  CAS  Google Scholar 

  16. Romanowski W (1969) Equilibrium forms of very small metallic crystals. Surf Sci 18:373–388

    Article  CAS  Google Scholar 

  17. Terajima H, Ozawa S, Fujiwara S (1973) Nucleus shape of vacuum-deposited bismuth films. Thin Solid Films 18:S7–S9

    Article  CAS  Google Scholar 

  18. Chu H, Kwon G, Yoo J B, Song Y Lee H (2010) Direct copper nanofabrication on silicon substrate by atomic force microscope lithography. In: Proceedings of 10th IEEE International Conference on Nanotechnology (NANO), pp 410–412. https://doi.org/10.1109/NANO.2010.5697908

  19. Tanaka Y, Ota K, Miyano H, Shigenaga Y, IiZuka T, Tatsumi K High temperature resistant packaging for SiC power devices using interconnections formed by Ni micro-electro-plating and Ni nano-particles. In: Proceedings of 2015 Electronic Components & Technology Conference (ECTC), pp 1371–1376

    Google Scholar 

  20. Aguilera-Granja F, Vega A, Rogan J, Garcia G (2007) Metallic behavior of Pd atomic clusters. Nanotechnology 18:365706

    Article  Google Scholar 

  21. Kreibig U (1978) The transition cluster-solid state in small gold particles. Solid State Commun 28:767–769

    Article  CAS  Google Scholar 

  22. Snider DR, Sorbello RS (1983) Variational calculation of the work function for small metal spheres. Solid State Commun 47(10):845–849

    Article  CAS  Google Scholar 

  23. Sodha MS, Dubey PK (1970) Dependence of Fermi energy on size. J Phys D Appl Phys 3:139–144

    Article  Google Scholar 

  24. Kolesnikov VV, Polozhentsev EV, Sachenko VP, Kovtun AP (1977) Size fluctuations of the work function in small metallic clusters. Sov Phys Solid State 19(5):883–884

    Google Scholar 

  25. O’Connor R (1977) Fundamentals of Chemistry, 2nd edn. Harper & Row, New York, pp 398–399

    Google Scholar 

  26. Colvin VL, Kulinowski KM (2007) Nanoparticles as catalysts for protein fibrillation. Proc Natl Acad Sci USA 104(21):8979–8980

    Article  Google Scholar 

  27. Huh Y, Green MLH, Kim YH, Lee JY, Lee CJ (2005) Control of carbon nanotube growth using cobalt nanoparticles as catalyst. Appl Surf Sci 249:145–150

    Article  CAS  Google Scholar 

  28. Edwards HK, Evans E, McCaldin S, Blood P, Gregory DH, Poliakoff M, Lester E, Walker GS, Brown PD (2006) Hydrothermally synthesized Fe2O3 nanoparticles for the CVD production of graphitic nanofibers. J Phys Conf Ser 26:195–198

    Article  Google Scholar 

  29. Sammy F (2006) The growth of GaN nanowires using nano particles as catalyst. NNIN REU Research Accomplishments, pp 112–113

    Google Scholar 

  30. Yoon H, Ko S, Jang J (2007) Nitrogen-doped magnetic carbon nanoparticles as catalyst supports for efficient recovery and recycling. Chem Commun:1468–1470. https://doi.org/10.1039/B616660A

  31. Sambles JR, Skinner LM, Lisgarten ND (1970) An electron microscope study of evaporating small particles: the Kelvin equation for liquid lead and mean surface energy of solid silver. Proc Roy Soc Lond A 3184:507–522

    Article  Google Scholar 

  32. Sambles JR (1971) An electron microscope study of evaporating gold particles: the Kelvin equation for liquid gold and the lowering of the melting point of solid gold particles. Proc Roy Soc Lond A 324:339–351

    Article  CAS  Google Scholar 

  33. Peppiatt SJ, Sambles JR (1975) The melting of small particles: I. Lead. Proc Roy Soc Lond A 345:387–399

    Article  CAS  Google Scholar 

  34. Peppiatt SJ (1975) The melting of small particles: II. Bismuth. Proc Roy Soc Lond A 345:401–412

    Article  CAS  Google Scholar 

  35. Reynolds CL, Couchman PR, Karasz FE (1976) On the relation between surface energy, melting temperature, and interatomic separation for metals. Philos Mag 34(4):659–661

    Article  CAS  Google Scholar 

  36. Lewis B (1972) The enhanced vapour pressure of small clusters. Thin Solid Films 9:305–308

    Article  CAS  Google Scholar 

  37. Allen GL, Bayles RA, Gile WW, Jesser WA (1986) Small particle melting of pure metals. Thin Solid Films 144:297–308

    Article  CAS  Google Scholar 

  38. Buffat P-A (1976) Lowering of the melting temperature of small gold crystals between 150Å and 25Å diameter. Thin Solid Films 32:283–286

    Article  CAS  Google Scholar 

  39. Jesser WA, Shneck RZ, Gile WW (2004) Solid-liquid equilibria in nanoparticles of Pb-Bi alloys. Phys Rev B 69:144121

    Article  Google Scholar 

  40. Jiang H, Moon K, Hua F, Wong CP Thermal properties of tin/silver alloy nanoparticles for low temperature lead-free interconnect tyechnology. In: Proceedings of 2007 electronic components and technology conference (ECTC), Reno, pp 54–58

    Google Scholar 

  41. Nimtz G, Marquardt P, Stauffer D, Weiss W (1988) Raoult’s law and the melting point depression in mesoscopic systems. Science 242:1671–1672

    Article  CAS  Google Scholar 

  42. Bogomolov VN, Zadorozhnii AI, Kapanadze AA, Lutsenko EL, Petranovskii VP (1976) Effect of size on the temperature of “melting” of 9Å metallic particles. Sov Phys Solid State 18(10):1777–1778

    Google Scholar 

  43. Ao ZM, Zheng WT, Jiang Q (2007) Size effects on the Kauzmann temperature and related thermodynamic parameters of Ag nanoparticles. Nanotechnology 18:255706

    Article  Google Scholar 

  44. Farrell HH, Van Siclen CD (2007) Binding energy, vapor pressure, and melting point of semiconductor nanoparticles. J Vac Sci Technol B 25(4):1441–1447

    Article  CAS  Google Scholar 

  45. Hendy SC (2007) A thermodynamic model for the melting of supported metal nanoparticles. Nanotechnology 18:175703

    Article  Google Scholar 

  46. Lai SL, Guo JY, Petrova V, Ramanath G, Allen LH (1996) Size-dependent melting properties of small tin particles: nanocalometric measurements. Phys Rev Lett 77(1):99–102

    Article  CAS  Google Scholar 

  47. Novikov A, Nowottnick M (2010) Nanoscaled solder for low-temperature assembling processes. In: Proceedings of 3rd Electronic System-Integration Technology Conference (ESTC), Berlin. https://doi.org/10.1109/ESTC.2010.5642877

  48. Jiang H, Moon K, Hua F, Wong CP (2007) Thermal properties of tin/silver alloy nanoparticles for low temperature lead-free interconnect technology. In: Proceedings of 57th Electronic Components and Technology Conference (ECTC), Reno, pp 54–58

    Google Scholar 

  49. Ohring M (2002) Materials science of thin films: deposition & structure, 2nd edn. Academic, San Diego, pp 395–397

    Google Scholar 

  50. Zhu H, Averback RS (1996) Sintering processes of two nanoparticles: a study by molecular-dynamics simulations. Philos Mag Lett 73(1):27–33

    Article  CAS  Google Scholar 

  51. Raut JS, Bhagat RB, Fichthorn KA (1998) Sintering of aluminum nanoparticles: a molecular dynamics study. Nanostruct Mater 10(5):837–851

    Article  CAS  Google Scholar 

  52. Shin D-Y, Han JW, Chun S (2014) The exothermic reaction route of a self-heatable conductive ink for rapid processable printed electronics. Nanoscale 6:630–637. https://doi.org/10.1039/c3nr04645a

    Article  CAS  Google Scholar 

  53. Eberspacher C, Fredric C, Pauls K, Serra J (2001) Thin-film CIS alloy PV materials fabricated using non-vacuum, particles-based techniques. Thin Solid Films 387:18–22

    Article  CAS  Google Scholar 

  54. Ko SH, Peng H, Grigoropoulos CP, Luscombe CK, Frechet JMJ, Poulikakos D (2007) All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 18:345202

    Article  Google Scholar 

  55. Hardwick DA (1987) Mechanical properties of thin films: a review. Thin Solid Films 154:109–124

    Article  CAS  Google Scholar 

  56. Cammarata RC (1994) Mechanical properties of nanocomposite thin films. Thin Solid Films 240:82–87

    Article  CAS  Google Scholar 

  57. Wert CA, Thomson RM (1970) Physics of solids, 2nd edn. McGraw-Hill, London

    Google Scholar 

  58. Dingreville R, Qu J, Cherkaoui M (2004) Effective elastic modulus of nano-particles. In: Proceedings of 9th international symposium on advanced packaging materials, Atlanta, pp 187–192

    Google Scholar 

  59. Perrey CR, Mook WM, Carter CB, Gerberich WW (2003) Characterization of mechanical deformation of nanoscale volumes. Mat Res Soc Symp Proc 740:13.13.1–13.13.6

    Google Scholar 

  60. Neugebauer CA, Webb MB (1962) Electrical conduction mechanism in ultrathin, evaporated metal films. J Appl Phys 33:74–82

    Article  CAS  Google Scholar 

  61. Morris JE (2006) Single-electron transistors. In: Dorf RC (ed) The electrical engineering handbook. Electronics, power electronics, optoelectronics, microwaves, electromagnetics, and radar, 3rd edn. CRC/Taylor & Francis, Boca Raton, pp 3.53–3.64

    Google Scholar 

  62. Morris JE, Radehaus C, Hietschold M, Kiesow A, Wu F (2004) Single electron transistors & discontinuous thin films. In: Michel B, Aschenbrenner R (eds) The world of electronic packaging and system integration. Dpp Goldenbogen, Dresden, pp 84–93

    Google Scholar 

  63. Morris JE (1968) Calculation of activation energy in discontinuous thin metal films. J Appl Phys 39:6107–6109

    Article  CAS  Google Scholar 

  64. Morris JE (1972) Non-ohmic properties of discontinuous thin metal films. Thin Solid Films 11:81–89

    Article  CAS  Google Scholar 

  65. Wu F, Morris JE (1998) Modeling conduction in asymmetrical discontinuous thin metal films. Thin Solid Films 317:178–182

    Article  Google Scholar 

  66. Morris JE (1998) Recent progress in discontinuous thin metal film devices. Vacuum 50(1–2):107–113

    Article  CAS  Google Scholar 

  67. Morris JE (1996) Electrical conduction in discontinuous thin metal films. In: Licznerski B, Dziedzic A (eds) Metal/non-metal microsystems: physics, technology & applications, vol 2780, SPIE International Society for Optical Engineering, pp 64–714

    Google Scholar 

  68. Morris JE (1970) Resistance changes of discontinuous thin gold films in air. Thin Solid Films 5:339–353

    Article  CAS  Google Scholar 

  69. Morris JE, O’Krancy M (1972) Resistance increase of discontinuous gold films by substrate absorption of oxygen. Thin Solid Films 10:319–320

    Article  CAS  Google Scholar 

  70. Morris JE, Wu F (1994) The effects of hydrogen absorption on the resistance of discontinuous palladium films. Thin Solid Films 246:17–23

    Article  Google Scholar 

  71. Morris JE, Kiesow A, Hong M, Wu F (1996) The effect of hydrogen absorption on the electrical conduction of discontinuous palladium thin films. Int J Electron 81(4):441–447

    Article  CAS  Google Scholar 

  72. Morris JE, Kiesow A, Hong M, Wu F (1996) The effect of hydrogen absorption on the electrical conduction of discontinuous palladium thin films. In: Licznerski B, Dziedzic A (eds) Metal/non-metal Microsystems: physics, technology & applications, vol 2780. SPIE International Society for Optical Engineering, pp 245–248

    Google Scholar 

  73. Morris JE (1972) The effect of strain on the electrical properties of discontinuous thin metal films. Thin Solid Films 11:259–272

    Article  CAS  Google Scholar 

  74. Morris JE (1972) The influence of soda-lime substrate ion drift on the resistance of discontinuous thin gold films. J Vac Sci Technol 9:1039–1040

    Article  CAS  Google Scholar 

  75. Morris JE (1975) The post-deposition resistance increase in discontinuous metal films. Thin Solid Films 28:L21–L23

    Article  Google Scholar 

  76. Morris JE (1975) Self-heating effects in discontinuous metal films. Thin Solid Films 35:165–168

    Article  Google Scholar 

  77. Das JH, Morris JE (1989) Diffusion and self-gettering of ion-implanted copper in polyimide. J Appl Phys 66(12):5816–5820

    Article  CAS  Google Scholar 

  78. Morris JE, Das JH (1994) Diffusion and aggregation of copper in polymers. In: Morris JE (ed) Electronics packaging forum, vol 3. IEEE Press, NewYork, pp 41–71

    Google Scholar 

  79. Morris JE, Das J (1994) Metal diffusion in polymers. IEEE Trans CPMT-B Adv Packag 17:620–625

    Google Scholar 

  80. Das JH, Morris JE (1991) Diffusion and gettering simulations of ion implanted copper in polyimide. In: Mittal KL (ed) Metallized plastics 2. Plenum, New York, pp 114–161

    Google Scholar 

  81. Craighead HG, Niklasson GA (1984) Characterization and optical properties of arrays of small gold particles. Appl Phys Lett 44(12):1134–1136

    Article  CAS  Google Scholar 

  82. Dmitruk NL, Kondratenko OS, Kovalenko SA, Mamontova IB (2005) Size effects in optical properties of thin metal films. In: Proceedings of 1st international workshop on semiconductor nanocrystals, Budapest, pp 227–230

    Google Scholar 

  83. Chen Y, Wang C, Ma Z, Su Z (2007) Controllable colours and shapes of silver nanostructures based on pH: application to surface-enhanced Raman scattering. Nanotechnology 18:325602

    Article  Google Scholar 

  84. Faraday M (1857) Experimental relations of gold (and other metals) to light. Phil Trans Roy Soc Lond 147:145

    Article  Google Scholar 

  85. Rayleigh L (1897) On the incidence of aerial and electric waves upon small obstacles and on the passage of electric waves through a circular aperture in a conducting screen. Phil Mag 44:28–52

    Article  Google Scholar 

  86. Maxwell Garnett JC (1904) Colours in metal glasses and in metallic films. Phil Trans Roy Soc Lond Ser A 203:385–420

    Article  Google Scholar 

  87. Maxwell Garnett JC (1905) Colours in metal glasses, in metallic films, and in metallic solutions. Phil Trans Roy Soc Lond Ser A 205:237–288

    Article  Google Scholar 

  88. Mie G (1908) Pioneering mathematical description of scattering by spheres. Ann Phys (Leipzig) 25:377

    Article  CAS  Google Scholar 

  89. Bruggeman DAG (1935) Ann Phys 24:636

    Google Scholar 

  90. David E (1939) Interpretations of the anomalies in the optical constants of thin metal films. Z Phys 114:389–406

    Article  CAS  Google Scholar 

  91. Schopper H (1951) Die untersuchung dunner absorbierender schichten mit hilfe der absoluten phase. Z Phys 130:565

    Article  CAS  Google Scholar 

  92. Wood DM, Ashcroft NW (1977) Effective medium theory of optical constants of small particle composites. Philos Mag 35(2):269–280

    Article  Google Scholar 

  93. Yamaguchi T, Takiguchi M, Fujioka S, Takahashi H (1984) Optical absorption of submonolayer gold films: size dependence of εbound in small island particles. Surf Sci 138:449–463

    Article  CAS  Google Scholar 

  94. Niklasson GA, Craighead HG (1985) Optical response and fabrication of regular arrays of ultrasmall gold particles. Thin Solid Films 125:165–170

    Article  CAS  Google Scholar 

  95. Norrman S, Andersson T, Granqvist CG (1977) Optical absorption in discontinuous gold films. Solid State Commun 23:261–265

    Article  CAS  Google Scholar 

  96. Norrman S, Andersson T, Granqvist CG (1978) Optical properties of discontinuous gold films. Phys Rev B 18(2):674

    Article  CAS  Google Scholar 

  97. Ward L (1969) The effective optical constants of thin metal films in island form. Br J Appl Phys (J Phys D) Ser 2 2:123–125

    Article  Google Scholar 

  98. Marton JP, Schlesinger M (1969) Optical constants of thin discontinuous nickel films. J Appl Phys 40(11):4529–4533

    Article  CAS  Google Scholar 

  99. Vamdatt AR, Naik YG (1971) Application of Maxwell Garnett theory to antimony films. Thin Solid Films 8:R30–R32

    Article  CAS  Google Scholar 

  100. Parmigiani F, Scagliotti M, Samoggia G, Ferraris GP (1985) Influence of the growth conditions on the optical constants of thin gold films. Thin Solid Films 125:229–234

    Article  CAS  Google Scholar 

  101. Kuwata H, Tamaru H, Esumi K, Miyano K (2003) Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation. Appl Phys Lett 83(22):4625–4627

    Article  CAS  Google Scholar 

  102. Fan JCC, Zavracky PM (1976) Selective black absorbers using MgO/Au cermet films. Appl Phys Lett 29(8):478–480

    Article  CAS  Google Scholar 

  103. Yamaguchi T, Sakai M, Saito N (1985) Optical properties of well-defined granular metal systems. Phys Rev B 32(4):2126–2130

    Article  CAS  Google Scholar 

  104. Eichelbaum M, Schmidt BE, Ibrahim H, Rademann K (2007) Three-photon-induced luminescence of gold nanoparticles embedded in and located on the surface of glassy nanolayers. Nanotechnology 18:355702

    Article  Google Scholar 

  105. Sabanayagam CR, Lakowicz JR (2007) Fluctuation correlation spectroscopy and photon histogram analysis of light scattered by gold nanospheres. Nanotechnology 18:355402

    Article  CAS  Google Scholar 

  106. Johnson RC, Li J, Hupp JT, Schatz GC (2002) Hyper-Rayleigh scattering studies of silver, copper, and platinum nanoparticle suspensions. Chem Phys Lett 356:534–540

    Article  CAS  Google Scholar 

  107. Nolte DD (1994) Optical scattering and absorption by metal nanoclusters in GaAs. J Appl Phys 76(6):3740–3745

    Article  CAS  Google Scholar 

  108. Doremus RH (1965) Optical properties of small silver particles. J Chem Phys 42(1):414–418

    Article  CAS  Google Scholar 

  109. Doremus RH (1964) Optical properties of small gold particles. J Chem Phys 40:2389–2396

    Article  Google Scholar 

  110. Doremus (1966) Optical properties of thin metal films in island form. J Appl Phys 37(7):2775–2781

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Morris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morris, J.E. (2018). Nanoparticle Properties. In: Morris, J. (eds) Nanopackaging. Springer, Cham. https://doi.org/10.1007/978-3-319-90362-0_6

Download citation

Publish with us

Policies and ethics