Skip to main content

Carbon Interconnects

  • Chapter
  • First Online:
Nanopackaging

Abstract

This chapter provides a comprehensive review of the state of the art of carbon-based interconnects, presenting the most relevant results in modeling, fabrication, and integration.

Due to their outstanding electrical, thermal, and mechanical properties, carbon-based materials such as carbon nanotubes and graphene nanoribbons have been proposed as candidates for realizing electrical interconnects, to overcome the limits foreseen at nanoscale for conventional materials like copper. Extensive consideration has been so far devoted to this emerging interconnect technology, with a huge effort spent in theoretical and experimental works aimed at demonstrating its feasibility.

Simulation results opened the door to the promise of a real technological breakthrough, characterized by fascinating properties like electrical and thermal ballistic transport, reduced delay, insensitivity to skin effect, mitigation of electromigration, thermal stability, and enhanced reliability and resiliency. These results suggest using carbon materials to fabricate all types of interconnects for future nanoscale VLSI circuits, on-chip signal and power interconnects, through-silicon vias, chip-to-package interconnects, and so on.

In practical applications, these promising results are strictly related to the possibility of realizing high-quality carbon interconnects, with a satisfactory control over parameters like chirality, density, alignment, defects, surface roughness, and contacts. Therefore, major efforts have been made in the last years to assess reliable design approaches and effective fabrication processes. Although technological solutions have been demonstrated to solve issues like the compatibility of the growth temperature with the standard CMOS technology, the needed density and degree of alignment, the presence of defects, and the contact quality, these solutions are still not suitable for a mass production, and so the route to the industrial exploitation of this emerging technology is still long.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore GE (1965) Cramming more components onto integrated circuits. Electron Mag:114–117

    Google Scholar 

  2. Dennard R, Gaensslen F, Rideout V, Bassous E, LeBlanc A (1974) Design of ion-implanted MOSFETs with very small dimensions. IEEE J Solid State Circ 9:256–268

    Article  Google Scholar 

  3. International technology roadmap for semiconductors, ITRS 2.0. http://www.itrs2.net/, edition 2015

  4. Hu CK, Harper JME (1998) Copper interconnections and reliability. Mater Chem Phys 52:5–16

    Article  CAS  Google Scholar 

  5. Shamiryan D, Abell T, Iacopi F, Maex K (2004) Low-k dielectric materials. Mater Today 7:34–39

    Article  CAS  Google Scholar 

  6. Steinhoegl W, Schindler G, Steinlesberger G, Traving M, Engelhardt M (2005) Comprehensive study of the resistivity of copper wires with lateral dimensions of 100nm and smaller. J Appl Phys 97:023706–023701.:7

    Article  CAS  Google Scholar 

  7. Beausoleil RG, Kuekes PJ, Snider GS, Shih-Yuan W, Williams RS (2008) Nanoelectronic and nanophotonic interconnect. Proc IEEE 96:230–247

    Article  CAS  Google Scholar 

  8. Young B (2000) Digital signal integrity: modeling and simulation with interconnects and packages. Prentice Hall

    Google Scholar 

  9. Swaminathan M, Engin E (2008) Power integrity modeling and design for semiconductors and systems. Prentice Hall, Upper Saddle River

    Google Scholar 

  10. Slepyan GY, Boag A, Mordachev V, Sinkevich E, Maksimenko S, Kuzhir P, Miano G, Portnoi ME, Maffucci A (2015) Nanoscale electromagnetic compatibility: quantum coupling and matching in nanocircuits. IEEE Trans Electromagn Compat 57:1645–1654

    Article  Google Scholar 

  11. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189

    Article  CAS  Google Scholar 

  12. Sasaki N, Kimoto K, Moriyama W, Kikkawa T (2009) A single-chip ultra-wideband receiver with silicon integrated antennas for inter-chip wireless interconnection. IEEE J Solid State Circ 44:382–393

    Article  Google Scholar 

  13. Avouris P, Chen Z, Perebeinos V (2007) Carbon based electronics. Nat Nanotechnol 2:605

    Article  CAS  Google Scholar 

  14. Van Noorden R (2006) Moving towards a graphene world. Nature 442:228–229

    Article  CAS  Google Scholar 

  15. Morris JE, Iniewski K (2013) Graphene, carbon nanotubes, and nanostructures: techniques and applications. CRC-Press, Boca Raton

    Google Scholar 

  16. Saito R, Dresselhaus G, Dresselhaus MS (2004) Physical properties of carbon nanotubes. Imperial College Press, Singapore

    Google Scholar 

  17. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162

    Article  CAS  Google Scholar 

  18. Rosenblatt S, Yaish Y, Park J, Gore J, Sazonova V, McEuen PL (2002) High performance electrolyte gated carbon nanotube transistors. Nano Lett 2:869–872

    Article  CAS  Google Scholar 

  19. Bolotin KI, Sikes KJ, Hone J, Stormer HL, Kim P (2008) Temperature-dependent transport in suspended graphene. Phys Rev Lett 101:096802

    Article  CAS  Google Scholar 

  20. Li HJ, Lu WG, Li JJ, Bai XD, Gu CZ (2005) Multichannel ballistic transport in multiwall carbon nanotubes. Phys Rev Lett 95:086601-1-4

    Google Scholar 

  21. Wei BQ, Vajtai R, Ajayan PM (2001) Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett 79:1172–1174

    Article  CAS  Google Scholar 

  22. Murali R, Yang Y, Brenner K, Beck T, Meindl JD (2009) Breakdown current density of graphene nano ribbons. Appl Phys Lett 94:243114

    Article  CAS  Google Scholar 

  23. Bellucci S (2005) Carbon nanotubes: physics and applications. Phys Status Solidi C 2:34–47

    Article  CAS  Google Scholar 

  24. Pop E, Mann D, Wang Q, Goodson K, Dai H (2005) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6:96–100

    Article  CAS  Google Scholar 

  25. Yap CC, Brun C, Tan D, Li H, Teo EHT, Baillargeat D, Tay BK (2012) Carbon nanotube bumps for the flip chip packaging system. Nanoscale Res Lett 7:105

    Article  CAS  Google Scholar 

  26. Close GF, Yasuda S, Paul B, Fujita S, Philip Wong H-S (2009) A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors. Nano Lett 8:706–709

    Article  CAS  Google Scholar 

  27. Chen X, Akinwande D, Lee K-J, Close GF, Yasuda S, Paul BC, Fujita S, Kong J, Philip Wong H-S (2010) Fully integrated graphene and carbon nanotube interconnects for gigahertz high-speed CMOS electronics. IEEE Trans Electron Devices 57:3137–3143

    Article  CAS  Google Scholar 

  28. Wang T, Chen S, Jiang D, Fu Y, Jeppson K, Ye L, Liu J (2012) Through-silicon vias filled with densified and transferred carbon nanotube forests. IEEE Electron Device Lett 33:420–422

    Article  CAS  Google Scholar 

  29. Shulaker MM, Hills G, Patil N, Wei H, Chen H-Y, Philip Wong H-S, Mitra S (2013) Carbon nanotube computer. Nature 501:256–530

    Article  CAS  Google Scholar 

  30. Lee K-J, Park H, Kong J, Chandrakasan AP (2013) Demonstration of a subthreshold FPGA using monolithically integrated graphene interconnects. IEEE Trans Electron Devices 60:383–390

    Article  CAS  Google Scholar 

  31. Datta S (1995) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  32. Slepyan GY, Maksimenko SA, Lakhtakia A, Yevtushenko O, Gusakov AV (1999) Electrodynamics of carbon nanotubes: dynamics conductivity, impedance boundary conditions, and surface wave propagation. Phys Rev B 60:17136

    Article  CAS  Google Scholar 

  33. Ding L, Liang S, Pei T, Zhang Z, Wang S, Zhou W, Liu J, Peng L-M (2012) Carbon nanotube based ultra-low voltage integrated circuits: scaling down to 0.4 V. Appl Phys Lett 100:263116.:1-5

    Article  CAS  Google Scholar 

  34. Hanson GW (2011) A common electromagnetic framework for carbon nanotubes and solid nanowires-spatially dispersive conductivity, generalized Ohm’s law, distributed impedance, and transmission line model. IEEE Trans Microw Theory Tech 59:9–20

    Article  CAS  Google Scholar 

  35. Maffucci A, Miano G (2015) A general frame for modeling the electrical propagation along graphene nanoribbons, carbon nanotubes and metal nanowires. Comput Model N Technol 19:8–14

    Google Scholar 

  36. Miano G, Villone F (2006) An integral formulation for the electrodynamics of metallic carbon nanotubes based on a fluid model. IEEE Trans Antennas Propag 54(10):2713–2734

    Article  Google Scholar 

  37. Wesström JJ (1996) Signal propagation in electron waveguides: transmission-line analogies. Phys Rev B 54:11484–11491

    Article  Google Scholar 

  38. Burke PJ (2003) An RF circuit model for carbon nanotubes. IEEE Trans Nanotechnol 2:55–58

    Article  Google Scholar 

  39. Salahuddin S, Lundstrom M, Datta S (2005) Transport effects on signal propagation in quantum wires. IEEE Trans Electron Devices 52:1734–1742

    Article  Google Scholar 

  40. Miano G, Forestiere C, Maffucci A, Maksimenko SA, Slepyan GY (2011) Signal propagation in single wall carbon nanotubes of arbitrary chirality. IEEE Trans Nanotechnol 10:135–149

    Article  Google Scholar 

  41. Forestiere C, Maffucci A, Maksimenko SA, Miano G, Slepyan GY (2012) Transmission line model for multiwall carbon nanotubes with intershell tunneling. IEEE Trans Nanotechnol 11:554–564

    Article  Google Scholar 

  42. Maffucci A, Miano G, Villone F (2008) A transmission line model for metallic carbon nanotube interconnects. Inter J Circ Theory Appl 36:31–51

    Article  Google Scholar 

  43. Forestiere C, Maffucci A, Miano G (2010) Hydrodynamic model for the signal propagation along carbon nanotubes. J Nanophotonics 4:041695

    Article  CAS  Google Scholar 

  44. Naeemi A, Meindl JD (2006) Compact physical models for multiwall carbon-nanotube interconnects. IEEE Electron Devices Lett 27:338–340

    Article  Google Scholar 

  45. Naeemi A, Meindl JD (2009) Compact physics-based circuit models for graphene nanoribbon interconnects. IEEE Trans Electron Devices 56:1822–1833

    Article  CAS  Google Scholar 

  46. Xu C, Li H, Banerjee K (2009) Modeling, analysis, and design of graphene nano-ribbon interconnects. IEEE Trans Electron Devices 56:1567–1578

    Article  CAS  Google Scholar 

  47. Li H, Xu C, Srivastava N, Banerjee K (2009) Carbon nanomaterials for next-generation interconnects and passives: physics, status, and prospects. IEEE Trans Electron Devices 56:1799–1821

    Article  CAS  Google Scholar 

  48. Wilhite P, Vyas AA, Tan J, Tan J, Yamada T, Wang P, Park J, Yang CY (2014) Metal nanocarbon contacts. Semicond Sci Technol 29:054006

    Article  CAS  Google Scholar 

  49. Liao L, Bai J, Lin YC, Qu Y, Huang Y, Duan X (2010) High-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics. Adv Mater 22:1941–1945

    Article  CAS  Google Scholar 

  50. Valitova I, Amato M, Mahvash F, Cantele G, Maffucci A, Santato C, Martel R, Cicoira F (2013) Carbon nanotube electrodes in organic transistors. Nanoscale 5:4638–4646

    Article  CAS  Google Scholar 

  51. Bourlon B, Miko C, Forro L, Glattli DC, Bachtold A (2004) Determination of the intershell conductance in multiwalled carbon nanotubes. Phys Rev Lett 93:176806

    Article  CAS  Google Scholar 

  52. Shuba MV, Slepyan GY, Maksimenko SA, Thomsen C, Lakhtakia A (2009) Theory of multiwall carbon nanotubes as waveguides and antennas in the infrared and the visible regimes. Phys Rev B 79:155403

    Article  CAS  Google Scholar 

  53. Maffucci A (2015) A new mechanism for THz detection based on the tunneling effect in bi-layer graphene nanoribbons. Appl Sci 5:1102–1116

    Article  CAS  Google Scholar 

  54. D’Amore M, Sarto MS (2010) Fast transient analysis of next-generation interconnects based on carbon nanotubes. IEEE Trans Nanotechnol 52:496–503

    Google Scholar 

  55. Cui J-P, Zhao W-S, Yin W-Y, Hu J (2012) Signal transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects. IEEE Trans Electromagn Compat 54(1):126–132

    Article  Google Scholar 

  56. Chiariello AG, Maffucci A, Miano G (2013) Circuit models of carbon-based interconnects for nanopackaging. IEEE Trans Compon Packag Manuf Technol 3:1926–1937

    Article  CAS  Google Scholar 

  57. Pedram M, Nazarian S (2008) Thermal modeling, analysis, and management in VLSI circuits: principles and methods. Proc IEEE 94:1487–1501

    Article  Google Scholar 

  58. Pop E, Mann DA, Goodson KE, Dai HJ (2007) Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates. J Appl Phys 101:093710

    Article  CAS  Google Scholar 

  59. Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:215502

    Article  CAS  Google Scholar 

  60. Firkowska I, Boden A, Vogt A-M, Reich S (2011) Tailoring the contact thermal resistance at metal–carbon nanotube interface. Phys Status Solidi B 248:2520–2523

    Article  CAS  Google Scholar 

  61. Maffucci A, Miano G (2013) Number of conducting channels for armchair and zig-zag graphene nanoribbon interconnects. IEEE Trans Nanotechnol 12:817–823

    Article  CAS  Google Scholar 

  62. Shao Q, Liu G, Teweldebrhan D, Balandin AA (2008) High-temperature quenching of electrical resistance in graphene interconnects. Appl Phys Lett 92:202108

    Article  CAS  Google Scholar 

  63. Vollebregt S, Banerjee S, Beenakker K, Ishihara R (2013) Size-dependent effects on the temperature coefficient of resistance of carbon nanotube vias. IEEE Trans Electron Dev 60:4085–4089

    Article  CAS  Google Scholar 

  64. Huang XMH, Caldwell R, Huang L, Jun SC, Huang M, Sfeir MY, O’Brien SP, Hone J (2005) Controlled placement of individual carbon nanotubes. Nano Lett 5:1515–1518

    Article  CAS  Google Scholar 

  65. Zhong GF, Iwasaki T, Kawarada H (2006) Semi-quantitative study on the fabrication of densely packed and vertically aligned single-walled carbon nanotubes. Carbon 44:2009–2014

    Article  CAS  Google Scholar 

  66. Schönenberger C, Bachtold A, Strunk C, Salvetat JP, Forr L (1999) Interference and interaction in multiwall carbon nanotubes. Appl Phys A Mater Sci Process 69:283–295

    Article  Google Scholar 

  67. Zhang ZJ, Wei BQ, Ramanath G, Ajayan PM (2000) Substrate-site selective growth of aligned carbon nanotubes. Appl Phys Lett 77(23):3764–3766

    Article  CAS  Google Scholar 

  68. Kang SJ, Kocabas C, Ozel T, Shim M, Pimparkar N, Alam MA, Rotkin SV, Rogers JA (2007) High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat Nanotechnol 2:230–236

    Article  CAS  Google Scholar 

  69. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  70. Journet C, Maser WK, Bernier P, Loiseau A, de la Chapelle ML, Lefrant S, Deniard P, Lee R, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758

    Article  CAS  Google Scholar 

  71. Zhang Q, Huang JQ, Zhao MQ, Qian WZ, Wei F (2011) Carbon nanotube mass production: principles and processes. Chem Sustain Chem 4(7):864–889

    Article  CAS  Google Scholar 

  72. Cantoro M, Hofmann S, Pisana S, Scardaci V, Parvez A, Ducati C, Ferrari AC, Blackburn AM, Wang KY, Robertson J (2006) Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures. Nano Lett 6:1107–1112

    Article  CAS  Google Scholar 

  73. Terranova ML, Sessa V, Rossi M (2006) The world of carbon nanotubes: an overview of CVD growth methodologies. J Chem Vap Depos 12:315–325

    Article  CAS  Google Scholar 

  74. Kumar M (2011) Carbon nanotube synthesis and growth mechanism. In: Yellampalli S (ed) Carbon nanotubes-synthesis, characterization, applications. IN-TECH, Croatia. isbn: 978-953-307-497-9, Available from: http://www.intechopen.com/books/carbon-nanotubes-synthesis-characterization-applications/carbonnanotube-synthesis-and-growth-mechanism

    Google Scholar 

  75. Esconjauregui S, Fouquet M, Bayer BC, Ducati C, Smajda R, Hofmann S, Robertson J (2010) Growth of ultrahigh density vertically aligned carbon nanotube forests for interconnects. ACS Nano 4:7431–7436

    Article  CAS  Google Scholar 

  76. Yang J, Esconjauregui S, Robertson AW, Guo Y, Hallam T, Sugime H, Zhong G, Duesberg GS, Robertson J (2015) Growth of high-density carbon nanotube forests on conductive TiSiN supports. Appl Phys Lett 106:083108

    Article  CAS  Google Scholar 

  77. Na N, Kim DY, So YG, Ikuhara Y, Noda S (2015) Simple and engineered process yielding carbon nanotube arrays with 1.2e1013 cm−2 wall density on conductive underlayer at 400°C. Carbon 81:773–781

    Article  CAS  Google Scholar 

  78. Yokoyama D, Iwasaki T, Yoshida T, Kawarada H, Sato S, Hyakushima T, Nihei M, Awano Y (2007) Low temperature grown carbon nanotube interconnects using inner shells by chemical mechanical polishing. Appl Phys Lett 91:263101-1-3

    Article  CAS  Google Scholar 

  79. Chiodarelli N, Li Y, Cott DJ, Mertens S, Peys N, Heyns M, De Gendt S, Groeseneken G, Vereecken PM (2011) Integration and electrical characterization of carbon nanotube via interconnects. Microelectron Eng 88:837–843

    Article  CAS  Google Scholar 

  80. Vollebregt S, Tichelaar FD, Schellevis H, Beenakker CIM, Ishihara R (2014) Carbon nanotube vertical interconnects fabricated at temperatures as low as 350 °C. Carbon 71:249–256

    Article  CAS  Google Scholar 

  81. Hofmann S, Ducati C, Robertson J (2003) Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl Phys Lett 83:135

    Article  CAS  Google Scholar 

  82. Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362

    Article  CAS  Google Scholar 

  83. Meyyappan M, Delzeit L, Cassell A, Hash D (2003) Carbon nanotube growth by PECVD: a review. Plasma Sources Sci Technol 12:205–216

    Article  CAS  Google Scholar 

  84. Maffucci A, Micciulla F, Cataldo A, Miano G, Bellucci S (2017) Modeling, fabrication, and characterization of large carbon nanotube interconnects with negative temperature coefficient of the resistance. IEEE Trans Compon Packag Manuf 7:485–493

    Article  CAS  Google Scholar 

  85. Liu TL, Wu HW, Wang CY, Chen SY, Hung MH, Yew TR (2013) A method to form self-aligned carbon nanotube vias using a Ta-cap layer on a Co-catalyst. Carbon 56:366–373

    Article  CAS  Google Scholar 

  86. Xin H, Woolley AT (2004) Directional orientation of carbon nanotubes on surfaces using a gas flow cell. Nano Lett 4:1481–1484

    Article  CAS  Google Scholar 

  87. Chai Y, Hazeghi A, Takei K, Chen H-Y, Chan PCH, Javey A, Philip Wong H-S (2012) Low-resistance electrical contact to carbon nanotubes with graphitic interfacial layer. IEEE Trans Electron Devices 59:12–19

    Article  CAS  Google Scholar 

  88. Fiedler H, Toader M, Hermann S, Rennau M, Rodriguez RD, Sheremet E, Hietschold M, Zahn DRT, Schulz SE, Gessner T (2015) Back-end-of-line compatible contact materials for carbon nanotube based interconnects. Microelectron Eng 137:130–134

    Article  CAS  Google Scholar 

  89. Chiodarelli N, Fournier A, Okuno H, Dijon J (2013) Carbon nanotubes horizontal interconnects with end-bonded contacts, diameters down to 50 nm and lengths up to 20 μm. Carbon 60:139–145

    Article  CAS  Google Scholar 

  90. Chiodarelli N, Fournier A, Dijon J (2013) Impact of the contact’s geometry on the line resistivity of carbon nanotubes bundles for applications as horizontal interconnects. Appl Phys Lett 103:053115-1-4

    Article  CAS  Google Scholar 

  91. Xu W, Lee T-W (2016) Recent progress in fabrication techniques of graphene nanoribbons. Mater Horiz 3:186–207

    Article  CAS  Google Scholar 

  92. Campos-Delgado J, Kim YA, Hayashi T, Morelos-Gómez A, Hofmann M, Muramatsu H, Endo M, Terrones H, Shull RD, Dresselhaus MS, Terrones M (2009) Thermal stability studies of CVD-grown graphene nanoribbons: defect annealing and loop formation. Chem Phys Lett 469:177–182

    Article  CAS  Google Scholar 

  93. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  CAS  Google Scholar 

  94. Wang X, Dai H (2010) Etching and narrowing of graphene from the edges. Nat Chem 2:661–664

    Article  CAS  Google Scholar 

  95. Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos S (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  96. Kimouche A, Ervasti MM, Drost R, Halonen S, Harju A, Joensuu PM, Sainio J, Liljeroth P (2015) Ultra-narrow metallic armchair graphene nanoribbons. Nat Commun 6:10177

    Article  CAS  Google Scholar 

  97. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876

    Article  CAS  Google Scholar 

  98. Rakheja S, Kumar V, Naeemi A (2013) Evaluation of the potential performance of graphene nanoribbons as on-chip interconnects. Proc IEEE 101:1740–1765

    Article  CAS  Google Scholar 

  99. Tan X, Chuang H-J, Lin M-W, Zhou Z, Cheng MM-C (2013) Edge effects on the pH response of graphene nanoribbon field effect transistors. J Phys Chem C 117:27155–27160

    Article  CAS  Google Scholar 

  100. Babichev AV, Gasumyants VE, Egorov AY, Vitusevich S, Tchernycheva M (2014) Contact properties to CVD-graphene on GaAs substrates for optoelectronic applications. Nanotechnology 25:335707

    Article  CAS  Google Scholar 

  101. Wang X, Dai H (2010) Etching and narrowing of graphene from the edges. Nat Chem 2:661–665

    Article  CAS  Google Scholar 

  102. Hicks J, Tejeda A, Taleb-Ibrahimi A, Nevius M, Wang F, Shepperd K, Palmer J, Bertran F, Le Fevre P, Kunc J, de Heer WA, Conrad EH (2013) A wide-bandgap metal-semiconductor-metal nanostructure made entirely from graphene. Nat Phys 9:49–54

    Article  CAS  Google Scholar 

  103. Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, de Heer WA (2010) Scalable templated growth of graphene nanoribbons on SiC. Nat Nanotechnol 5:727–731

    Article  CAS  Google Scholar 

  104. Maffucci A, Micciulla F, Cataldo A, Miano G, Bellucci S (2016) Bottom-up realization and electrical characterization of a graphene-based device. Nanotechnology 27:095204-1-9

    Article  CAS  Google Scholar 

  105. Zhao W-S, Yin W-Y (2014) Comparative study on multilayer graphene nanoribbon (MLGNR) interconnects. IEEE Trans Electromagn Compat 56:638–645

    Article  Google Scholar 

  106. Jiang J, Kang J, Cao W, Xie X, Zhang H, Chu JH, Liu W, Banerjee K (2017) Intercalation doped multilayer-graphene-nanoribbons for next-generation interconnects. Nano Lett 17:1482–1488

    Article  CAS  Google Scholar 

  107. Bao W, Wan J, Han X, Cai X, Zhu H, Kim D, Ma D, Xu Y, Munday JN, Dennis Drew H, Fuhrer MS, Hu L (2014) Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nat Commun 5:4224

    Article  CAS  Google Scholar 

  108. Todri-Sanial A, Dijon J, Maffucci A (2016) Carbon nanotubes for interconnects: process, design and applications. Springer, The Netherlands

    Google Scholar 

  109. Naeemi A, Meindl JD (2008) Design and performance modeling for single-walled carbon nanotubes as local, semiglobal, and global interconnects in gigascale integrated systems. IEEE Trans Electron Devices 54:26–37

    Article  CAS  Google Scholar 

  110. Raychowdhury A, Roy K (2006) Modelling of metallic carbon-nanotube interconnects for circuit simulations and a comparison with Cu interconnects for scaled technologies. IEEE Trans Comp Aided Des Integr Circ Syst 25:58–65

    Article  Google Scholar 

  111. Maffucci A, Miano G, Villone F (2008) Performance comparison between metallic carbon nanotube and copper nano-interconnects. IEEE Trans Adv Packag 31:692–699

    Article  CAS  Google Scholar 

  112. Hoenlein W, Kreupl F, Duesberg GS, Graham AP, Liebau M, Seidel RV, Unger E (2004) Carbon nanotube applications in microelectronics. IEEE Trans Compon Packag Technol 27:629–634

    Article  CAS  Google Scholar 

  113. Li H, Srivastava N, Mao J-F, Yin W-Y, Banerjee K (2011) Carbon nanotube vias: does ballistic electron–phonon transport imply improved performance and reliability? IEEE Trans Electron Devices 58:2689–2701

    Article  CAS  Google Scholar 

  114. Wang T, Jeppson K, Ye L, Liu J (2011) Carbon-nanotube through-silicon via interconnects for three-dimensional integration. Small 7:2313–2317

    Article  CAS  Google Scholar 

  115. Todri A, Kundu S, Girard P, Bosio A, Dilillo L, Virazel A (2013) A study of tapered 3-D TSVs for power and thermal integrity. IEEE Trans VLSI Syst 21:306–319

    Article  Google Scholar 

  116. Xie R et al (2013) Carbon nanotube growth for through silicon via application. Nanotechnology 24:125603

    Article  CAS  Google Scholar 

  117. Magnani A, de Magistris M, Todri-Sanial A, Maffucci A (2016) Electrothermal analysis of carbon nanotubes power delivery networks for nanoscale integrated circuits. IEEE Trans Nanotechnol 15:380–388

    Article  CAS  Google Scholar 

  118. Li H, Liu W, Cassell AM, Kreupl F, Banerjee K (2013) Low-resistivity long-length horizontal carbon nanotube bundles for interconnect applications-part II: characterization. IEEE Trans Electron Devices 60:2870–2876

    Article  CAS  Google Scholar 

  119. Vollebregt S, Ishihara R (2016) The direct growth of carbon nanotubes as vertical interconnects in 3D integrated circuits. Carbon 96:332–338

    Article  CAS  Google Scholar 

  120. Yokoyama D, Iwasaki T, Ishimaru K, Sato S, Hyakushima T, Nihei M, Awano Y, Kawarada H (2008) Electrical properties of carbon nanotubes grown at a low temperature for use as interconnects. Jpn J Appl Phys 47:1985–1990

    Article  CAS  Google Scholar 

  121. Dijon J, Ramos R, Fournier A, Le Poche H, Fournier H, Okuno H, Simonato JP (2014) Record resistivity of in-situ grown horizontal carbon nanotube interconnect, vol 3. Proceedings of the 2014 NSTI nanotechnology conference and expo, NTSI-nanotech 2014. pp 17–20

    Google Scholar 

  122. Close GF, Philip Wong H-S (2008) Assembly and electrical characterization of multiwall carbon nanotube interconnects. IEEE Trans Nanotechnol 7:596–600

    Article  Google Scholar 

  123. Knickerbocker JU et al (2008) Three-dimensional silicon integration. IBM J Res Dev 52:553–569

    Article  Google Scholar 

  124. Katti G, Stucchi M, De Meyer K, Dehaene W (2010) Electrical modeling and characterization of through silicon via for three-dimensional ICs. IEEE Trans Electron Devices 57:256–262

    Article  CAS  Google Scholar 

  125. Wang T, Tung F, Foo L, Dutta V (2001) Studies on a novel flip-chip interconnect structure. Pillar bump. In: Proceedings of ECTC, electronic components and technology conference

    Google Scholar 

  126. Subramaniam C, Yamada T, Kobashi K, Sekiguchi A, Futaba DN, Yumura M, Hata K (2013) One hundred fold increase in current carrying capacity in a carbon nanotube–copper composite. Nat Commun 4:2202–2208

    Article  CAS  Google Scholar 

  127. Xu C, Li H, Suaya R, Banerjee K (2010) Compact AC modeling and performance analysis of through-silicon vias in 3-D ICs. IEEE Trans Electron Devices 57:3405–3417

    Article  CAS  Google Scholar 

  128. Kim J et al (2011) High-frequency scalable electrical model and analysis of a through silicon via (TSV). IEEE Trans Compon Pack Manuf Techn 1:181–195

    Article  CAS  Google Scholar 

  129. Chiariello AG, Maffucci A, Miano G (2012) Electrical modeling of carbon nanotube vias. IEEE Trans Electromagn Compat 54:158–166

    Article  Google Scholar 

  130. Zhao W-S, Zheng J, Hu Y, Sun S, Wang G, Dong L, Yu L, Sun L, Yin W-Y (2016) High frequency analysis of cu-carbon nanotube composite through-silicon vias. IEEE Trans Nanotechnol 15:506–511

    Article  CAS  Google Scholar 

  131. Das D, Rahaman H (2011) Analysis of crosstalk in single- and multiwall carbon nanotube interconnects and its impact on gate oxide reliability. IEEE Trans Nanotechnol 10:1362–1370

    Article  Google Scholar 

  132. Steinhogl W, Schindler G, Steinlesberger G, Traving M, Engelhardt M (2005) Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller. J Appl Phys 97:023706./1-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Maffucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maffucci, A. (2018). Carbon Interconnects. In: Morris, J. (eds) Nanopackaging. Springer, Cham. https://doi.org/10.1007/978-3-319-90362-0_23

Download citation

Publish with us

Policies and ethics