Skip to main content

Silver Nanoparticles for Inkjet-Printed Conductive Structures in Electronic Packaging

  • Chapter
  • First Online:
Nanopackaging

Abstract

In modern microelectronics production, additive fabrication processes offer a thematic contrast to traditional micro-fabrication processes that rely critically on subtractive patterning. Printing, a bottom-up process, plays an important role in this production, especially when nanomaterials are printed. There are many areas in which such printing is used [1], but only electrically conductive structures in electronic packaging are the object of interest in this section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choi HW, Zhou T, Singh M, Jabbour GE (2015) Recent developments and directions in printed nanomaterials. Nanoscale 7:3338

    Article  CAS  Google Scholar 

  2. Suganuma K (2014) Introduction to printed electronics, Springer Briefs in Electrical and Computer Engineering, New York

    Book  Google Scholar 

  3. Hedges M, Renn M, Kardos M (2005) Mesoscale deposition technology for electronics applications. In: 5th international conference on polymers and adhesives in microelectronics and photonics. Polytronic, Wroclaw, p 53

    Google Scholar 

  4. Choi J, Kim Y-J, Lee S, Son SU, Ko HS, Nguyen VD, Byun D (2008) Drop-on-demand printing of conductive ink by electrostatic field induced inkjet head. Appl Phys Lett 93:193508

    Article  CAS  Google Scholar 

  5. Yuji IY, Hakiai K, Baba A, Asano T (2005) Electrostatic inkjet patterning using Si needle prepared by anodization. Jap J of Applied Physics 44(7B):5786

    Article  CAS  Google Scholar 

  6. Rapp L, Biver E, Alloncle AP, Delaporte P (2014) High-speed laser printing of silver nanoparticles ink. J Laser Micro/Nanoengineering 9(1):5

    Article  CAS  Google Scholar 

  7. Bohandy J, Kim BF, Adrian FJ (1986) Metal-deposition from a supported metal-film using an excimer laser. J Appl Phys 60(4):1538

    Article  CAS  Google Scholar 

  8. Florian C, Caballero-Lucas F, Fernández-Pradas JM, Artigas R, Ogier S, Karnakis D, Serra P (2015) Conductive silver ink printing through the laser-induced forward transfer technique. Appl Surf Sci 336:304

    Article  CAS  Google Scholar 

  9. Chen S-P, Chiu H-L, Wang P-H, Liao Y-C (2015) Inkjet printed conductive tracks for printed electronics. ECS J Solid State Sci Technol 4(4):3026

    Article  CAS  Google Scholar 

  10. Kao Z-K, Hung Y-H, Liao Y-C (2011) Formation of conductive silver films via inkjet reaction system. J Mater Chem 21:18799

    Article  CAS  Google Scholar 

  11. Gupta A, Mandal S, Katiyar M, Mohapatra YN (2011) Low temperature solution process for fabrication of electrodes on flexible substrate using gold nanoparticles. Int J Nanosci 10(4 and 5):659

    Article  CAS  Google Scholar 

  12. Chen W-D, Lin Y-H, Chang C-P, Sung Y, Liu Y-M, Ger M-D (2011) Fabrication of high-resolution conductive line via inkjet printing of nano-palladium catalyst onto PET substrate. Surf Coat Technol 205(20):4750

    Article  CAS  Google Scholar 

  13. Tang X-F, Yang Z-G, Wang W-J (2010) A simple way of preparing high-concentration and high-purity nano copper colloid for conductive ink in inkjet printing technology. Colloids Surf A: Physicochem Eng Aspect 360:99

    Article  CAS  Google Scholar 

  14. Kang JS, Kim HS, Ryu J, Hahn HT, Jang S, Joung JW (2010) Inkjet printed electronics using copper nanoparticle ink. J Mater Sci Mater Electron 21:1213

    Article  CAS  Google Scholar 

  15. Cheon J, Lee J, Kim J (2012) Inkjet printing using copper nanoparticles synthesized by electrolysis. Thin Solid Films 520(7):2639

    Article  CAS  Google Scholar 

  16. Shirakawa N, Kajihara K, Kashiwagi Y, Murata K (2015) Fine-pitch copper wiring formed in a platingless process using ultra-fine inkjet and oxygen pump. In: International conference on electronics packaging and IMAPS all Asia conference (ICEP-IACC). Kyoto, p 373

    Google Scholar 

  17. Soltani A, Kumpulainen T, Mäntysalo M (2014) Inkjet printed nano-particle Cu process for fabrication of re-distribution layers on silicon wafer. In: 64th electronic components and technology conference. ECTC, Orlando, p1685

    Google Scholar 

  18. Wei Y, Li Y, Torah R, Tudo J (2015) Laser curing of screen and inkjet printed conductors on flexible substrates. In: Symposium on design, test, integration and packaging of MEMS/MOEMS (DTIP), Montpellier

    Google Scholar 

  19. Grouchko M, Kamyshny A, Magdassi S (2009) Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing. J Mater Chem Vol 19:3057

    Article  CAS  Google Scholar 

  20. Butovsky E, Perelshtein II, Gedanken A (2013) Fabrication, characterization, and printing of conductive ink based on multi core–shell nanoparticles synthesized by RAPET. Adv Funct Mater 23:5794

    Article  CAS  Google Scholar 

  21. Platek B, Urbanski K, Falat T, Felba J (2011) The method of carbon nanotube dispersing for composite used in electronic packaging. In: 11th IEEE international conference on nanotechnology, Portland, p 102

    Google Scholar 

  22. Mustonen T (2009) Inkjet printing of carbon nanotubes for electronic applications, Acta Universitatis Ouluensis, C Technica 346, Oulu (academic dissertation supervised by K. Kordás)

    Google Scholar 

  23. Mionić M, Pataky K, Gaal R, Magrez A, Brugger J, Forró L (2012) Carbon nanotubes–SU8 composite for flexible conductive inkjet printable applications. J Mater Chem 22:14030

    Article  CAS  Google Scholar 

  24. Dinh NT, Sowade E, Blaudeck T, Hermann S, Rodriguez RD, Zahn DRT, Schulz SE, Baumann RR, Kanoun O (2016) High-resolution inkjet printing of conductive carbon nanotube twin lines utilizing evaporation-driven self-assembly. Carbon 96:382

    Article  CAS  Google Scholar 

  25. Lee C-L, Chen C-H, Chen C-W (2013) Graphene nanosheets as ink particles for inkjet printing on flexible board. Chem Eng J 230:296

    Article  CAS  Google Scholar 

  26. Arapov K, Abbel R, de With G, Friedrich H (2014) Inkjet printing of graphene. Faraday Discuss 173:323

    Article  CAS  Google Scholar 

  27. Wang G, Wang Z, Liu Z, Xue J, Xin G, Yu Q, Lian J, Chen MY (2015) Annealed graphene sheets decorated with silver nanoparticles for inkjet printing. Chem Eng J 260:582

    Article  CAS  Google Scholar 

  28. Huang L, Huang Y, Liang J, Wan X, Chen Y (2011) Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res 4(7):675

    Article  CAS  Google Scholar 

  29. Akbari M, Lauri Sydänheimo L, Juutiy J, Vuorinen J, Ukkonen L (2014) Characterization of graphene-based inkjet printed samples on flexible substrate for wireless sensing applications. In: RFID technology and applications conference, Tampere, p 135

    Google Scholar 

  30. Gao Y, Shi W, Wang W, Leng Y, Zhao Y (2014) Inkjet printing patterns of highly conductive pristine graphene on flexible substrates. Ind Eng Chem Res 53:16777

    Article  CAS  Google Scholar 

  31. Finn DJ, Lotya M, Coleman JN (2015) Inkjet printing of silver nanowire networks. ACS Appl Mater Interfaces 7:9254

    Article  CAS  Google Scholar 

  32. Felba J, Schaefer H (2008) Materials and technology for conductive microstructures. (Chapter 12. In: Morris JE (ed) Nanopackaging: nanotechnologies and electronics packaging. Springer, New York

    Google Scholar 

  33. Sadowski Z (2010) Chapter 13: Biosynthesis and application of silver and gold nanoparticles. In: Perez DP (ed) Silver nanoparticles. Intech, Vienna

    Google Scholar 

  34. Mościcki A, Felba J, Sobierajski T, Kudzia J Arp A Meyer W (2005) Electrically conductive formulations filled nano size silver filler for ink-jet technology. In: 5th international IEEE conference on polymers and adhesive in microelectronics and photonics, Wroclaw, p 40

    Google Scholar 

  35. Nakamoto M, Yamamoto M, Kashiwagi Y, Kakiuchi H, Tsujimoto T, Yoshida Y (2007) A variety of silver nanoparticle pastes for fine electronic circuit pattern formation. In: Polytronic 2007 – 6th international conference on polymers and adhesives in microelectronics and photonics, Tokyo, p 105

    Google Scholar 

  36. Mościcki A, Felba J, Gwiaździński P, Puchalski M (2007) Conductivity improvement of microstructures made by nano-size-silver filled formulations. In: Polytronic 2007 – 6th international conference on polymers and adhesives in microelectronics and photonics, Tokyo, p 305

    Google Scholar 

  37. Cavicchioli M, Varanda LC, Massabni AC, Melnikov P (2005) Silver nanoparticles synthesized by thermal reduction of a silver(I)–aspartame complex in inert atmosphere. Mater Lett 59:3585

    Article  CAS  Google Scholar 

  38. Nagasawa H, Maruyama M, Komatsu T, Isoda S, Kobayashi T (2002) Physical characteristic of stabilized silver nanoparticles formed using a new thermal- decomposition method. Phys Status Solidi 191(1):67

    Article  CAS  Google Scholar 

  39. Felba J, Nitsch K, Piasecki T, Tesarski S, Moscicki A, Kinart A, Bonfert D, Bock K (2009) Properties of conductive microstructures containing nano sized silver particles. In: 11th electronics packaging technology conference, Singapore, p 879

    Google Scholar 

  40. Felba J, Nitsch K, Piasecki T, Paluch P, Moscicki A, Kinart A (2009) The influence of thermal process on electrical conductivity of microstructures made by ink-jet printing with the use of ink containing nano sized silver particles. In: 9th IEEE conference on nanotechnology, Genoa, p 494

    Google Scholar 

  41. Smolarek A, Mościcki A, Kinart A, Felba J, Fałat T (2011) Dependency of silver nanoparticles protective layers on sintering temperature of printed conductive structures. In: 34th international spring seminar on electronics technology, ISSE, Tatranská Lomnica

    Google Scholar 

  42. Kawazome M, Suganuma K, Hatamura M, Kim K-S, Horie S, Hirasawa A, Tanaami H (2006) Low temperature printing wiring with Ag salt pastes. In: 35th international symposium on microelectronics IMAPS, San Diego, WP61

    Google Scholar 

  43. Huang Q, Shen W, Xu Q, Tan R, Song W (2014) Properties of polyacrylic acid-coated silver nanoparticle ink for inkjet printing conductive tracks on paper with high conductivity. Mater Chem Phys 147(3):550

    Article  CAS  Google Scholar 

  44. Zhai D, Zhang T, Guo J, Fang X, Wei J (2013) Water-based ultraviolet curable conductive inkjet ink containing silver nano-colloids for flexible electronics. Colloids Surf A Physicochem Eng Asp 424:1

    Article  CAS  Google Scholar 

  45. Shen W, Zhang X, Huang Q, Xu Q, Song W (2014) Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale 6:1622

    Article  CAS  Google Scholar 

  46. Yung KC, Gu X, Lee CP, Choy HS (2010) Ink-jet printing and camera flash sintering of silver tracks on different substrates. J Mater Process Technol 210(15):2268

    Article  CAS  Google Scholar 

  47. Kang JS, Ryu J, Kim HS, Hahn HT (2011) Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light. J Electron Mater 40(11):2268

    Article  CAS  Google Scholar 

  48. Jeong S, Song HC, Lee WW, Choi Y, Riu B-H (2010) Preparation of aqueous Ag ink with long-term dispersion stability and its inkjet printing for fabricating conductive tracks on a polyimide film. J Appl Phys 108:102805

    Article  CAS  Google Scholar 

  49. Magdassi S, Bassa A, Vinetsky Y, Kamyshny A (2003) Silver nanoparticles as pigments for water-based ink-jet inks. Chem Mater 15:2208

    Article  CAS  Google Scholar 

  50. Kosmala A, Wright R, Zhang Q, Kirby P (2011) Synthesis of silver nano particles and fabrication of aqueous Ag inks for inkjet printing. Mater Chem Phys 129(3):1075

    Article  CAS  Google Scholar 

  51. Zhang Z, Zhao B, Hu L (1996) PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. J Solid State Chem 121(0015):105

    Article  CAS  Google Scholar 

  52. Zhang Z, Zhang X, Xin Z, Deng M, Wen Y, Song Y (2013) Controlled inkjetting of a conductive pattern of silver nanoparticles based on the coffee-ring effect. Adv Mater 25:6714

    Article  CAS  Google Scholar 

  53. Jahn SF, Blaudeck T, Baumann RR, Jakob A, Ecorchard P, Rüffer T, Lang H (2010) Inkjet printing of conductive silver patterns by using the first aqueous particle-free MOD ink without additional stabilizing ligands. Chem Mater 22:3067

    Article  CAS  Google Scholar 

  54. Hsu SL-C, Wu R-T (2007) Synthesis of contamination-free silver nanoparticle suspensions for micro-interconnects. Mater Lett 61:3719

    Article  CAS  Google Scholar 

  55. Wakuda D, Hatamura M, Suganuma K (2007) Novel room temperature wiring process of Ag nanoparticle paste. In: Polytronic 2007 – 6th international conference on polymers and adhesives in microelectronics and photonics, Tokyo, p 110

    Google Scholar 

  56. Perelaer J, Jani R, Grouchko M, Kamyshny A, Magdassi S, Schubert US (2012) Plasma and microwave flash sintering of a tailored silver nanoparticle ink, yielding 60% bulk conductivity on cost-effective polymer foils. Adv Mater 24:3993

    Article  CAS  Google Scholar 

  57. Magdassi S, Grouchko M, Berezin O, Kamyshny A (2010) Triggering the sintering of silver nanoparticles at room temperature. ACS Nano 4(4):1943

    Article  CAS  Google Scholar 

  58. Tilaki RM, Iraji ZA, Mahdavi SM (2006) Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media. Appl Phys A Mater Sci Process 84:215

    Article  CAS  Google Scholar 

  59. Murata K, Matsumoto J, Tezuka A, Matsuba Y, Yokoyama H (2005) Super-fine ink-jet printing: toward the minimal manufacturing system. Microsyst Technol 12:2

    Article  CAS  Google Scholar 

  60. Maekawa K, Yamasaki K, Niizeki T, Mita M, Matsuba Y, Terada N, Saito H (2012) Drop-on-demand laser sintering with silver nanoparticles for electronics packaging. IEEE Trans Components Packag Manuf Technol 2(5):868

    Article  CAS  Google Scholar 

  61. Mościcki A, Felba J, Dudziński W (2006) Conductive microstructures and connections for microelectronics made by ink-jet technology. In: 1st electronics systemintegration technology conference, Dresden, p 511

    Google Scholar 

  62. Rajan K, Roppolo I, Chiappone A, Bocchini S, Perrone D, Chiolerio A (2016) Silver nanoparticle ink technology: state of the art. Nanotechnol Sci Appl 9:1

    CAS  Google Scholar 

  63. Pyatenko A (2010) Chap. 6: Synthesis of silver nanoparticles with laser assistance. In: Perez DP (ed) Silver nanoparticles. Intech, London

    Google Scholar 

  64. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385

    CAS  Google Scholar 

  65. Jung JH, Oh HC, Noh HS, Ji JH, Kim SS (2006) Metal nanoparticle generation using a small ceramic heater with a local heating area. J Aerosol Sci 37:1662

    Article  CAS  Google Scholar 

  66. Puchalski M, Kowalczyk PJ, Klusek A, Olejniczak W (2010) Chap. 3: The applicability of global and surface sensitive techniques to characterization of silver nanoparticles for ink-jet printing technology. In: Perez DP (ed) Silver nanoparticles. Intech, London

    Google Scholar 

  67. Saito H, Matsuba Y (2006) Liquid wiring technology by ink-jet printing using nanopaste. In: 35th international symposium on microelectronics IMAPS, San Diego, TP65

    Google Scholar 

  68. www.harima.co.jp/products/electronics

  69. Matula RA (1979) Electrical resistivity of copper, gold, palladium and silver. J Phys Chem Ref Data 8(4):1147

    Article  CAS  Google Scholar 

  70. Liu Y-F, Hwang W-S, Pai Y-F, Tsai M-H (2012) Low temperature fabricated conductive lines on flexible substrate by inkjet printing. Microelectron Reliab 52(2):391

    Article  CAS  Google Scholar 

  71. Wünscher S, Stumpf S, Teichler A, Pabst O, Perelaer J, Beckert E, Schubert US (2012) Localized atmospheric plasma sintering of inkjet printed silver nanoparticles. J Mater Chem 22:24569

    Article  CAS  Google Scholar 

  72. Szczech JB, Megaridis CM, Gamota DR, Zhang J (2002) Fine-line conductor manufacturing using drop-on-demand PZT printing technology. IEEE Trans Electron Packag Manuf 25(1):26

    Article  CAS  Google Scholar 

  73. Smith PJ, Shin D, Stringer JE, Derby B, Reis N (2006) Direct ink-jet printing and low temperature conversion of conductive silver patterns. J Mater Sci Vo 41:4153

    Article  CAS  Google Scholar 

  74. Urbański KJ, Fałat T, Felba J, Mościcki A, Smolarek A, Bonfert D, Bock K (2012) Experimental method for low-temperature sintering of nano-Ag inks using electrical excitation. In: 12th nanotechnology conference IEEE NANO, Birmingham

    Google Scholar 

  75. Miettinen J, Pekkanen V, Kaija K, Mansikkamäki P, Mäntysalo J, Niittynen J, Pekkanen J, Saviauk T, Rönkkä R (2008) Inkjet printed system-in-package design and manufacturing. Microelectron J 39:1740

    Article  Google Scholar 

  76. Murata K, Shimizu K (2006) Micro bump formation by using a super fine inkjet system. In: 35th international symposium on microelectronics IMAPS, San Diego, TP66

    Google Scholar 

  77. Reinhold I, Hendriks CE, Eckardt R, Kranenburg JM, Perelaer J, Baumann RR, Schubert US (2009) Argon plasma sintering of inkjet printed silver tracks on polymer substrates. J Mater Chem 19:3384

    Article  CAS  Google Scholar 

  78. Perelaer J, de Gans B-J, Schubert US (2006) Ink-jet printing and microwave sintering of conductive silver tracks. Adv Mater 18:2101

    Article  CAS  Google Scholar 

  79. Jang S, Lee DJ, Lee D, Oh JH (2013) Electrical sintering characteristics of inkjet-printed conductive Ag lines on a paper substrate. Thin Solid Films 546:157

    Article  CAS  Google Scholar 

  80. Khorramdel B, Mäntysalo M (2014) Inkjet filling of TSVs with silver nanoparticle ink electronics. In: System-integration technology conference (ESTC), Helsinki

    Google Scholar 

  81. Fuller SB, Wilhelm EJ, Jacobson JM (2002) Ink-jet printed nanoparticle microelectromechanical systems. J Microelectromech Syst 11(1):54

    Article  Google Scholar 

  82. Kim D, Jeong S, Park BK, Moon J (2006) Direct writing of silver conductive patterns: improvement of film morphology and conductance by controlling solvent compositions. Appl Phys Lett 89:264101

    Article  CAS  Google Scholar 

  83. Meier H, Löffelmann U, Mager D, Smith PJ, Korvink JG (2009) Inkjet printed, conductive, 25 μm wide silver tracks on unstructured polyimide. Phys Status Solidi A 206(7):1626

    Article  CAS  Google Scholar 

  84. van Osch HJ, Perelaer J, de Laat AWM, Schubert US (2008) Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Adv Mater 20:343

    Article  CAS  Google Scholar 

  85. Perelaer J, Klokkenburg M, Hendriks CE, Schubert US (2009) Microwave flash sintering of inkjet-printed silver tracks on polymer substrates. Adv Mater 21:4830

    Article  CAS  Google Scholar 

  86. Kim ChJ, Nogi M, Suganuma K (2011) Effect of ink viscosity on electrical resistivity of narrow printed silver lines. In: 11th IEEE international conference on nanotechnology, Portland

    Google Scholar 

  87. Wünscher S, Stumpf S, Perelaer J, Schubert US (2014) Towards single-pass plasma sintering: temperature influence of atmospheric pressure plasma sintering of silver nanoparticle ink. J Mater Chem C 2:1642

    Article  CAS  Google Scholar 

  88. Kim MK, Kang H, Kang K, Lee SH, Hwang JY, Moon Y, Moon SJ (2010) Laser sintering of inkjet-printed silver nanoparticles on glass and PET substrates. In: 10th IEEE international conference on nanotechnology, Kintex, p 520

    Google Scholar 

  89. Allen ML, Aronniemi M, Mattila T, Alastalo A, Ojanperä K, Suhonen M, Seppä H (2008) Electrical sintering of nanoparticle structures. Nanotechnology 19:175201

    Article  CAS  Google Scholar 

  90. Kim D, Lee I, Yoo Y, Moon Y-J, Moon S-J (2014) Transient variation of a cross-sectional area of inkjet-printed silver nanoparticle ink during furnace sintering. Appl Surf Sci 305:453

    Article  CAS  Google Scholar 

  91. Zhang Z, Zhu W (2015) Controllable synthesis and sintering of silver nanoparticles for inkjet-printed flexible electronics. J Alloys Compd 649:687

    Article  CAS  Google Scholar 

  92. Kim C, Nogi M, Suganuma K (2012) Electrical conductivity enhancement in inkjet-printed narrow lines through gradual heating. J Micromech Microeng 22:035016

    Article  CAS  Google Scholar 

  93. Abbel R, van Lammeren T, Hendriks R, Ploegmakers J, Rubingh EJ, Meinders ER, Groen WA (2012) Photonic flash sintering of silver nanoparticle inks: a fast and convenient method for the preparation of highly conductive structures on foil. MRS Commun 2:145

    Article  CAS  Google Scholar 

  94. Meyer W (2001) Micro dispensing of adhesives and other polymers. In: 1st international IEEE conference on polymers and adhesive in microelectronics and photonics, Potsdam, p 35

    Google Scholar 

  95. Ongley E (1996) Chapter 13: Sediment measurements. In: Bartram J, Ballanc R (eds) Water quality monitoring – a practical guide to the design and implementation of freshwater, quality studies and monitoring programme. E&FN Spon, London/Weinheim/New York/Tokyo/Melbourne/Madras

    Google Scholar 

  96. Smolarek-Nowak A (2014) Materials with silver nanoparticles for inkjet printing electrically conductive structures in flexible electronics (in Polish), Wroclaw University of Technology, Wroclaw (PhD thesis supervised by J. Felba)

    Google Scholar 

  97. Mościcki A, Smolarek A, Felba J, Fałat T (2013) Chapter 13: Properties of different types of protective layers on silver metallic nanoparticles for ink-jet printing technique. In: Morris JE, Iniewski K (eds) Graphene, carbon nanotubes, and nanostructures, techniques and applications. CRS Press Taylor & Francis Group, Boca Raton

    Google Scholar 

  98. Cao G (2004) Nanostructures and nanomaterials. Imperial College Press, London

    Book  Google Scholar 

  99. Rosen MJ (1978) Surfactants and interfacial phenomena. Wiley, New York

    Google Scholar 

  100. Tamjid E, Guenther BH (2010) Rheological and sedimentation behaviour of nanosilver colloids for inkjet printing. Int J Nanomanufacturing 5(3/4):383

    Article  CAS  Google Scholar 

  101. www.microdrop.de

  102. Cummins G, Marc PY, Desmulliez MPY (2012) Inkjet printing of conductive materials: review. Circ World 38(4):193

    Article  CAS  Google Scholar 

  103. Perelaer J, Schubert US (2010) Chapter 16: Inkjet printing and alternative sintering of narrow conductive tracks on flexible substrates for plastic electronic applications. In: Turcu C (ed) Radio frequency identification fundamentals and applications, design methods and solutions. Intech, London

    Google Scholar 

  104. Naiman M (1965) Sudden steam printer, US Patent No. 3179042

    Google Scholar 

  105. Zoltan SI (1972) Pulsed droplet ejecting system, US Patent No. 3683212

    Google Scholar 

  106. Stemme NGE (1972) Arrangement of writing mechanisms for writing on paper with a colored liquid, US Patent No. 3747120

    Google Scholar 

  107. Kamyshny A, Steinke J, Magdassi S (2011) Metal-based inkjet inks for printed electronics. Open Appl Phys J 4:19

    Article  CAS  Google Scholar 

  108. Le HP (1998) Progress and trends in inkjet printing technology. J Imaging Sci Technol 42(1):49

    CAS  Google Scholar 

  109. Mei J, Lovell MR, Mickle MH (2005) Formulation and processing of novel conductive solution inks in continuous inkjet printing of 3-D electric circuits. IEEE Trans ELectron Packag Manuf 28(3):265

    Article  CAS  Google Scholar 

  110. Brünahl J, Grishin AM (2002) Piezoelectric shear mode drop-on demand inkjet actuator. Sensors Actuators A 101:371

    Article  Google Scholar 

  111. Liou TM, Shih KC, Chau SW, Chen SC (2002) Three-dimensional simulations of the droplet formation during the inkjet printing process. Int Comm Heat Mass Transf 29(8):1109

    Article  Google Scholar 

  112. Chen P-H, Peng H-Y, Liu H-Y, Chang S-L, Wu T-I, Cheng C-H (1999) Pressure response and droplet ejection of a piezoelectric inkjet printhead. Int J Mech Sci 41:235

    Article  Google Scholar 

  113. Stringer J, Derby B (2009) Limits to feature size and resolution in ink jet printing. J Eur Ceram Soc 29:913

    Article  CAS  Google Scholar 

  114. Lin J, Dahlsten P, Pekkanen J, Linden M, Mäntysalo M, Österbacka R (2009) Surface energy patterning for inkjet printing in device fabrication. In: Proceedings of SPIE Cardiff, Wales. The International Society for Optical Engineering, Bellingham, Washington, p. 7417

    Google Scholar 

  115. Mäntysalo M, Mansikkamäki P (2007) Inkjet-deposited Interconnections for electronic packaging. In: 23rd international conference on digital printing technologies, Anchorage, p 813

    Google Scholar 

  116. Nagai T, Hoshino K, Matminoto K, Shimoyama I (2005) Direct ink-jet printing of electric materials with active alignment control. In: 13th international conference on solid-state sensors, actuators and microsystems, Seul, p 1461

    Google Scholar 

  117. Magdassi S, Grouchko M, Toker D, Kamyshny A, Balberg I, Millo O (2005) Ring stain effect at room temperature in silver nanoparticles yields high electrical conductivity. Langmuir 21:10246

    Article  CAS  Google Scholar 

  118. Bromberg V, Ma S, Singler TJ (2013) High-resolution inkjet printing of electrically conducting lines of silver nanoparticles by edge-enhanced twin-line deposition. Appl Phys Lett 102:214101

    Article  CAS  Google Scholar 

  119. Jung JK, Choi SH, Kim I, Jung HC, Joung J, Joo YC (2008) Characteristics of microstructure and electrical resistivity of inkjet-printed nanoparticle silver films annealed under ambient air. Philos Mag 88(3):339

    Article  CAS  Google Scholar 

  120. Mościcki A, Fałat T, Smolarek A, Kinart A, Felba J, Borecki J (2012) Interconnection process by ink jet printing method. In: 12th nanotechnology conference IEEE NANO, Birmingham

    Google Scholar 

  121. Halonen E, Viiru T, Östman K, Lopez CA, Mäntysalo M (2013) Oven sintering process optimization for inkjet-printed ag nanoparticle ink. IEEE Trans Compon Packag Manuf Technol 3(2):350

    Article  CAS  Google Scholar 

  122. Niittynen J, Abbel R, Mäntysalo M, Perelaer J, Schubert US, Lupo D (2014) Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink. Thin Solid Films 556:452

    Article  CAS  Google Scholar 

  123. Chiolerio A, Maccioni G, Martino P, Cotto M, Pandolfi P, Rivolo P, Ferrero S, Scaltrito L (2011) Inkjet printing and low power laser annealing of silver nanoparticle traces for the realization of low resistivity lines for flexible electronics. Microelectron Eng 88:2481

    Article  CAS  Google Scholar 

  124. Andersson H, Lidenmark C, Öhlund T, Örtegren J, Manuilskiy A, Forsberg S, Nilsson HE (2012) Evaluation of coatings applied to flexible substrates to enhance quality of ink jet printed silver Nano-particle structures. IEEE Trans Compon Packag Manuf Technol 2(2):342

    Article  CAS  Google Scholar 

  125. Perelaer J, Hendriks CE, de Laat AWM, Schubert US (2009) One-step inkjet printing of conductive silver tracks on polymer substrates. Nanotechnology 20:165303

    Article  CAS  Google Scholar 

  126. Tang W, Chen Y, Zhao J, Chen S, Feng L, Guo X (2013) Inkjet printing narrow fine Ag lines on surface modified polymeric films. In: 8th IEEE international conference on nano/micro engineered and molecular systems (NEMS), Suzhou, p 1171

    Google Scholar 

  127. Denneulin A, Blayo A, Neuman C, Bras J (2011) Infra-red assisted sintering of inkjet printed silver tracks on paper substrates. J Nanopart Res 13:3815

    Article  CAS  Google Scholar 

  128. Lee D-G, Kim DK, Moon Y-J, Moon S-J (2013) Effect of temperature on electrical conductance of inkjet-printed silver nanoparticle ink during continuous wave laser sintering. Thin Solid Films 546:443

    Article  CAS  Google Scholar 

  129. Marinov VR (2004) Electrical resistance of laser sintered direct – write deposited materials for microelectronic applications. Intern Microelectron Pack Soc – JMEP 1(4):261

    CAS  Google Scholar 

  130. Allen M, Alastalo A, Suhonen M, Mattila T, Leppäniemi J, Seppä H (2011) Contactless electrical sintering of silver nanoparticles on flexible substrates. IEEE Trans Microw Theory Tech 59(5):1419

    Article  Google Scholar 

  131. Measured by K. Nitsch and T. Piasecki from Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Poland

    Google Scholar 

  132. Fałat T, Płatek B, Felba J (2012) Sintering process of silver nanoparticles in ink-jet printed conductive microstructures – molecular dynamics approach. In: 13th international conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems, EuroSimE, Lisbon

    Google Scholar 

  133. Son Y, Lim TW, Yeo J, Ko SH, Yang DY (2010) Fabrication of nano-scale conductors by selective femtosecond laser sintering of metal nanoparticles. In: 10th IEEE nanotechnology conference, Seoul, p 390

    Google Scholar 

  134. Maekawa K, Yamasaki K, Niizeki T, Mita M, Matsuba Y, Terad N, Saito H (2010) Laser sintering of silver nanoparticles for electronic use. Mater Sci Forum 638–642:2085

    Article  CAS  Google Scholar 

  135. Fałat T, Felba J, Płatek B, Mościcki A, Smolarek A, Stojek K (2012) Photonic sintering process of ink-jet printed conductive microstructures. In: 4th electronics system integration technologies conference, Amsterdam

    Google Scholar 

  136. West J, Carter M, Smith S, Sears J (2012) Chapter 8: Photonic sintering of silver nanoparticles: comparison of experiment and theory. In: Shatokha V (ed) Sintering – methods and products. InTech, London

    Google Scholar 

  137. Bai JG, Zhang ZZ, Calata JN, Lu G-Q (2006) Low-temperature sintered nanoscale silver as a novel semiconductor device-metallized substrate interconnect material. IEEE Trans Compon Packag Technol 29(3):589

    Article  CAS  Google Scholar 

  138. Nishi S (2006) Direct metal pattering for printable electronics by inkjet technology. In: 35th international symposium. on microelectronics IMAPS, San Diego, TP63

    Google Scholar 

  139. Murata K (2003) Super-fine ink-jet printing for nanotechnology. In: International conference on MEMS, NANO and smart systems (ICMENS’03), Banff, p 346

    Google Scholar 

  140. Peng W, Hurksainen V, Haskizume K, Dunford S, Quader S, Vatanparast R (2005) Flexible circuit creation with nano metal particles. In: 55th electronic component & technology conference, Lake Buena Vista, p 77

    Google Scholar 

  141. IPC-3013 (November 1998) A standard developed by the Institute for Interconnecting and Packaging of Electronic Circuit. Northbrook, Illinois

    Google Scholar 

  142. Imai H, Mizuno S, Makabe A, Sakurada K, Wada K (2006) Application of inkjet printing technology by Electro Packaging. In: 35th international symposium on microelectronics IMAPS, San Diego, TP67

    Google Scholar 

  143. Printed by K. Urbański from Faculty of microsystem electronics and photonics, Wroclaw University of Technology, Poland

    Google Scholar 

  144. Sternkiker C, Sowade E, Mitra KY, Zichner R, Baumann RR (2016) Upscaling of the inkjet printing process for the manufacturing of passive electronic devices. IEEE Trans Electron Devices 63(1):426

    Article  CAS  Google Scholar 

  145. Kawamura Y, Sigezawa K, Tanaka T, Koiwai K, Mizugaki K, Sakarada K, Kobayashi T, Wada K (2006) LTCC multilevel interconnection substrate with ink-jet printing and thick film printing for high-density packaging. In: 35th international symposium on microelectronics IMAPS, San Diego, TP64

    Google Scholar 

  146. Reinhold I, Thielen M, Voit W, Zapka W, Götzen R, Bohlmann K (2011) Inkjet printing of electrical vias. In: 18th European microelectronics and packaging conference (EMPC), Brighton

    Google Scholar 

  147. Eggenhuisen TM, Galagan Y, Biezemans AFKV, Slaats TMWL, Voorthuijzen WP, Kommeren S, Shanmugam S, Teunissen JP, Hadipour A, Verhees WJH, Veenstra SC, Coenen MJJ, Gilot J, Andriessen R, Groen WA (2015) High efficiency, fully inkjet printed organic solar cells with freedom of design. J Mater Chem A 3:7255

    Article  CAS  Google Scholar 

  148. Sipilä E, Ren Y, Virkki J, Sydänheimo L, Tentzeris MM, Ukkonen L (2015) Parametric optimization of inkjet printing and optical sintering of nanoparticle inks. In: 9th European conference on antennas and propagation (EuCAP), Lisbon

    Google Scholar 

  149. Casula GA, Montisci G, Mazzarella G (2013) A wideband PET inkjet-printed antenna for UHF RFID. IEEE Antennas Wirel Propag Lett 12:1400

    Article  Google Scholar 

  150. Björninen T, Virkki J, Virtanen J, Sydänheimo L, Ukkonen L, Tentzeris MM (2013) Inkjet-printing and performance evaluation of UHF RFID tag antennas on renewable materials with porous surfaces. In: 7th European conference on antennas and propagation, Gothenburg, p 1721

    Google Scholar 

  151. Farooqui MF, Shamim A (2013) Dual band inkjet printed bow-tie slot antenna on leather. In: 7th European conference on antennas and propagation, Gothenburg, p 3287

    Google Scholar 

  152. Pachler W, Grosinger J, Bösch W, Holweg G, Popovic K, Blümel A, List-Kratochvil EJW (2014) A silver inkjet printed ferrite NFC antenna. In: antennas and propagation conference, Loughborough, p 95

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Felba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Felba, J. (2018). Silver Nanoparticles for Inkjet-Printed Conductive Structures in Electronic Packaging. In: Morris, J. (eds) Nanopackaging. Springer, Cham. https://doi.org/10.1007/978-3-319-90362-0_14

Download citation

Publish with us

Policies and ethics