Skip to main content

An Ontology-Based Decision Support Framework for Personalized Quality of Life Recommendations

  • Conference paper
  • First Online:
Decision Support Systems VIII: Sustainable Data-Driven and Evidence-Based Decision Support (ICDSST 2018)

Abstract

As urban atmospheric conditions are tightly connected to citizens’ quality of life, the concept of efficient environmental decision support systems becomes highly relevant. However, the scale and heterogeneity of the involved data, together with the need for associating environmental information with physical reality, increase the complexity of the problem. In this work, we capitalize on the semantic expressiveness of ontologies to build a framework that uniformly covers all phases of the decision making process: from structuring and integration of data, to inference of new knowledge. We define a simplified ontology schema for representing the status of the environment and its impact on citizens’ health and actions. We also implement a novel ontology- and rule-based reasoning mechanism for generating personalized recommendations, capable of treating differently individuals with diverse levels of vulnerability under poor air quality conditions. The overall framework is easily adaptable to new sources and needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://pescado-project.upf.edu/.

  2. 2.

    http://newsroom.ucla.edu/releases/new-app-lets-you-check-air-quality-as-easily-as-checking-the-weather.

  3. 3.

    http://www.greenpeace.org/india/Clean-Air-Nation/.

  4. 4.

    https://airvisual.com/app.

References

  1. Karatzas, K., Kukkonen, J.: Quality of life information services towards a sustainable society for the atmospheric environment. In: COST Action ES0602 Workshop Proceedings (2009)

    Google Scholar 

  2. Zhu, L., Karatzas, K., Lee, J.: Urban environmental information perception and multimodal communication: the air quality example. In: Esposito, A., Hussain, A., Marinaro, M., Martone, R. (eds.) Multimodal Signals: Cognitive and Algorithmic Issues. LNCS (LNAI), vol. 5398, pp. 288–299. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00525-1_29

    Chapter  Google Scholar 

  3. Michels, H., Mauè, P.: Semantics for notifying events in the affecting environment. EnviroInfo Conference, pp. 501–507 (2010)

    Google Scholar 

  4. Karatzas, K., Endregard, G., Fløisand, I.: Citizen-oriented environmental information services: usage and impact modelling. In: 19th EnviroInfo Conference, pp. 872–878 (2005)

    Google Scholar 

  5. Rospocher, M., Serafini, L.: An ontological framework for decision support. In: Takeda, H., Qu, Y., Mizoguchi, R., Kitamura, Y. (eds.) JIST 2012. LNCS, vol. 7774, pp. 239–254. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37996-3_16

    Chapter  Google Scholar 

  6. Moumtzidou, A., Papadopoulos, S., Vrochidis, S., Kompatsiaris, I., Kourtidis, K., Hloupis, G., Stavrakas, I., Papachristopoulou, K., Keratidis, C.: Towards air quality estimation using collected multimodal environmental data. In: Satsiou, A., Panos, G., Praggidis, I., Vrochidis, S., Papadopoulos, S., Keratidis, C., Syropoulou, P., Liu, H.-Y. (eds.) IFIN/ISEM -2016. LNCS, vol. 10078, pp. 147–156. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50237-3_7

    Chapter  Google Scholar 

  7. McIntosh, B.S., et al.: Environmental decision support systems (EDSS) development-challenges and best practices. Environ. Model. Softw. J. 26(12), 1389–1402 (2011). https://doi.org/10.1016/j.envsoft.2011.09.009

    Article  Google Scholar 

  8. Matthies, M., Giupponi, C., Ostendorf, B.: Environmental decision support systems: current issues, methods and tools. Environ. Model. Softw. J. 22(2), 123–127 (2007). https://doi.org/10.1016/j.envsoft.2005.09.005

    Article  Google Scholar 

  9. Raskin, R., Pan, M.: Semantic web for earth and environmental terminology (SWEET). In: Proceedings of the Workshop on Semantic Web Technologies for Searching and Retrieving Scientific Data (2003)

    Google Scholar 

  10. Buttigieg, P.L., Morrison, N., Smith, B., Mungall, C.J., Lewis, S.E.: The environment ontology: contextualising biological and biomedical entities. J. Biom. Semant. 4(1), 43 (2013). https://doi.org/10.1186/2041-1480-4-43

    Article  Google Scholar 

  11. Oprea, M.M.: AIR_POLLUTION_Onto: an ontology for air pollution analysis and control. In: Iliadis, L., Maglogiannis, I., Tsoumakas, G., Vlahavas, I., Bramer, M. (eds.) AIAI 2009. IFIPAICT, vol. 296, pp. 135–143. Springer, Boston (2016). https://doi.org/10.1007/978-1-4419-0221-4_17

    Chapter  Google Scholar 

  12. Bicer, V., Tran, T., Abecker, A., Nedkov, R.: KOIOS: utilizing semantic search for easy-access and visualization of structured environmental data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7032, pp. 1–16. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25093-4_1

    Chapter  Google Scholar 

  13. Ruther, M., Bandholtz, T., Logean, A.: Linked environment data for the life sciences. In: 3rd International Workshop on Semantic Web Applications & Tools for the Life Sciences (2010)

    Google Scholar 

  14. Kontopoulos, E., Martinopoulos, G., Lazarou, D., Bassiliades, N.: An ontology-based decision support tool for optimising domestic solar hot water system selection. J. Cleaner Prod. 112, 4636–4646 (2016)

    Article  Google Scholar 

  15. Wetz, P., Trinh, T.D., Do, B.L., Anjomshoaa, A., Kiesling, E., Tjoa, A.M.: Towards an environmental information system for semantic stream data. In: 28th EnviroInfo Conference, pp. 637–644 (2014)

    Google Scholar 

  16. Wanner, L., et al.: Ontology-centered environmental information delivery for personalised decision support. Expert Syst. Appl. 42, 5032–5046 (2015). https://doi.org/10.1016/j.eswa.2015.02.048

    Article  Google Scholar 

  17. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquisition J. 5(2), 199–220 (1993). https://doi.org/10.1006/knac.1993.1008

    Article  Google Scholar 

  18. Turban, E., Aronson, J.E., Liang, T.P.: Decision Support Systems and Intelligent Systems, pp. 100–136. Pearson Prentice-Hall, Upper Saddle River (2005)

    Google Scholar 

  19. Suárez-Figueroa, M.C., Gómez-Pérez, A., Villazón-Terrazas, B.: How to write and use the ontology requirements specification document. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2009. LNCS, vol. 5871, pp. 966–982. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05151-7_16

    Chapter  Google Scholar 

  20. W3C OWL Working Group: OWL 2 Web Ontology Language. W3C Recommendation (2012). https://www.w3.org/TR/owl2-overview/

  21. Falco, R., Gangemi, A., Peroni, S., Shotton, D., Vitali, F.: Modelling OWL ontologies with graffoo. In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis, I., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8798, pp. 320–325. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11955-7_42

    Chapter  Google Scholar 

  22. Knublauch, H., Hendler, J.A., Idehen, K.: SPIN - overview and motivation. W3C Member Submission (2011). https://www.w3.org/Submission/spin-overview/

  23. hackAIR Consortium. D4.2: Semantic integration and reasoning of environmental data (2017). http://www.hackair.eu/wp-content/uploads/2016/03/d4.2-semantic_integration_and_reasoning_of_environmental_data.pdf

  24. Knublauch, H., Kontokostas, D.: Shapes Constraint Language (SHACL). W3C Recommendation (2017). https://www.w3.org/TR/shacl/

Download references

Acknowledgments

This work is partially funded by the European Commission under the contract number H2020-688363 hackAIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Riga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Riga, M., Kontopoulos, E., Karatzas, K., Vrochidis, S., Kompatsiaris, I. (2018). An Ontology-Based Decision Support Framework for Personalized Quality of Life Recommendations. In: Dargam, F., Delias, P., Linden, I., Mareschal, B. (eds) Decision Support Systems VIII: Sustainable Data-Driven and Evidence-Based Decision Support. ICDSST 2018. Lecture Notes in Business Information Processing, vol 313. Springer, Cham. https://doi.org/10.1007/978-3-319-90315-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90315-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90314-9

  • Online ISBN: 978-3-319-90315-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics