Skip to main content

Ecology for Sustainable and Multifunctional Agriculture

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 28

Abstract

The Green Revolution and the introduction of chemical fertilizers, synthetic pesticides and high yield crops had enabled to increase food production in the mid and late 20th. The benefits of this agricultural intensification have however reached their limits since yields are no longer increasing for many crops, negative externalities on the environment and human health are now recognized and economic inequality between farmers have increased. Agroecology has been proposed to secure food supply with fewer or lower negative environmental and social impacts than intensive agriculture. Agroecology principles are based on the recognition that biodiversity in agroecosystems can provide more than only food, fibre and timber. Hence, biodiversity and its associated functions, such as pollination, pest control, and mechanisms that maintain or improve soil fertility, may improve production efficiency and sustainability of agroecosystems. Although appealing, promoting ecological-based agricultural production is not straightforward since agroecosystems are socio-ecosystems with complex interactions between the ecological and social systems that act at different spatial and temporal scales. To be operational, agroecology thus requires understanding the relationships between biodiversity, functions and management, as well as to take into account the links between agriculture, ecology and the society. Here we review current knowledge on (i) the effect of landscape context on biodiversity and ecosystem functions and (ii) trophic and non-trophic interactions in ecological networks in agroecosystems. In particular, many insights have been made these two previous decades on (i) the interacting effects of management and landscape characteristics on biodiversity, (ii) the crucial role of plant diversity in delivering multiple services and (iii) the variety of ecological belowground mechanisms determining soil fertility in interaction with aboveground processes. However, we also pinpointed the absence of consensus on the effects of landscape heterogeneity on biodiversity and the need for a better mechanistic understanding of the effects of landscape and agricultural variables on farmland food webs and related services. We end by proposing new research avenues to fill knowledge gaps and implement agroecological principles within operational management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Landscape connectivity is defined as the ability of landscapes to facilitates or impedes the movement of organisms (Taylor et al. 1993)

Acknowledgements

This study is an initiative of the “Ecology and Agriculture ” group of the French Ecological Society (Société Française d’Ecologie, Sfe).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Gaba .

Editor information

Editors and Affiliations

References

References

  • Altieri MA, Rosset PM (1995) Agroecology and the conversion of large-scale conventional systems to sustainable management. Int J Env Stud 50:165–185.

  • Altieri MA (1999) Applying agroecology to enhance productivity of peasant farming systems in Latin America. Env Dev Sustain 1:197–217.

  • Altieri MA, Rosset PM (2002) Ten reasons why biotechnology will not ensure food security, protect the environment, or reduce poverty in the developing world. In: Ethical issues in biotechnology. Rowman and Littlefield, Lanham, MD, pp. 175–82.

  • Alyokhin A, Mota-Sanchez D, Baker M, Snyder WE, Menasha S, Whalon M, Dively G, Moarsi WF (2015) The Red Queen in a potato field: integrated pest management versus chemical dependency in Colorado potato beetle control. Pest Manag Sci 71:343–356.

  • Auclair D, Dupraz C (eds) (1997) Agroforestry for sustainable land-use: fundamental research and modelling with emphasis on temperate and Mediterranean applications. In: Forestry sciences, 60.Workshop, Montpellier, FRA (1997-06-23- 1997-06-29). Dordrecht, NLD: Kluwer Academic Publishers.

  • Bailey D, Schmidt-Entling MH, Eberhart P, Herrmann JD, Hofer G, Kormann U, & Herzog F. 2010. Effects of habitat amount and isolation on biodiversity in fragmented traditional orchards. Journal of Applied Ecology 47:1003-1013.

  • Balesdent J, Arrouays D (1999) An estimate of the net annual carbon storage in French soils induced by land use change from 1900 to 1999 (note présentée par Jérôme Balesdent). Comptes rendus-académie d’Agriculture de France, 85(6):265–277

  • Barot S, Yé L, Blouin M, Frascaria N (2017) Ecosystem services must tackle anthropized ecosystems and ecological engineering. Ecol Eng 99:486–495.

  • Barot S, Allard V, Cantarel A, Enjalbert J, Gauffreteau A, Goldringer I, Lata J-C, Le Roux X, Niboyet A, Porcher E (2017) Designing mixtures of varieties for multifunctional agriculture with the help of ecology. A review. Agron Sustain Dev (in press).

  • Barrett CB, Travis AJ, Dasgupta P (2011) On biodiversity conservation and poverty traps. Proc Natl Acad Sci 108: 13907–13912.

  • Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38: 567–593.

  • Baselga A, Bonthoux S, Balent G (2015) Temporal beta diversity of bird assemblages in agricultural landscapes: land cover change vs. stochastic processes. PLoS ONE 10:e0127913.

  • Bateman IJ et al (2013) Bringing ecosystem services into economic decision-making: land use in the United Kingdom. Science 341: 45–50.

  • Baudry J, Burel F, Thenail C, Le Cœur D (2000) A holistic landscape ecological study of the interactions between farming activities and ecological patterns in Brittany, France. Landsc Urban Plan 50:119–128.

  • Baudry J, Burel F, Aviron S, Martin M, Ouin A, Pain G, Thenail C (2003) Temporal variability of connectivity in agricultural landscapes: do farming activities help? Landsc Ecol 18:303–314.

  • Bengtsson J, Ahnström J, Weibull AC (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol 42:261–269.

  • Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188.

  • Bertrand C, Burel F, Baudry J (2016) Spatial and temporal heterogeneity of the crop mosaic influences carabid beetles in agricultural landscapes. Landsc Ecol 31:451–466.

  • Bianchi FJJA, Booij CHJ, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B Biol Sci 273:1715–1727.

  • Binder CR et al (2013) Comparison of frameworks for analyzing social-ecological systems. Ecol Soc 18:26.

  • Birkhofer K et al (2015) Ecosystem services—current challenges and opportunities for ecological research. Front Ecol Evol 2:87.

  • Blouin M, Hodson ME, Delgado EA, Baker G, Brussaard L, Butt KR, Dai J, Dendooven L, Pérès G, Tondoh JE, Cluzeau D, Brun J-J (2013) A review of earthworm impact on soil function and ecosystem services. Eur J Soil Sci 64:161–182.

  • Blubaugh CK, Hagler JR, Machtley SA, Kaplan I (2016) Cover crops increase foraging activity of omnivorous predators in seed patches and facilitate weed biological control. Agric Ecosyst Environ 231:264–270

  • Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28:230–238.

  • Bommarco R, Lindborg R, Marini L, Öckinger E (2014) Extinction debt for plants and flower‐visiting insects in landscapes with contrasting land use history. Divers Distrib 20(5):591–599.

  • Bonhommeau S et al (2013) Eating up the world’s food web and the human trophic level. Proc Natl Acad Sci 110:20617–20620.

  • Bonthoux S, Barnagaud JY, Goulard M, Balent G (2013) Contrasting spatial and temporal responses of bird communities to landscape changes. Oecologia 172:563–574.

  • Burel F, Baudry J (2003) Landscape ecology: concepts, methods, and applications. Science Publishers. p 378, ISBN:9781578082148

  • Burel F, Baudry J (2005) Habitat quality and connectivity in agricultural landscapes: the role of land use systems at various scales in time. Ecol Indic 5:305–313.

  • Burel F, Lavigne C, Marshall E (2013) Landscape ecology and biodiversity in agricultural landscapes. Agric Ecosyst Environ 1–2.

  • Busch L, Bain C (2004) New! Improved? The transformation of the global agrifood system. Rural Soc 69:321–346.

  • Cardinale BJ, Harvey CT, Gross K, Ives AR (2003) Biodiversity and biocontrol: emergent impacts of a multi‐enemy assemblage on pest suppression and crop yield in an agroecosystem. Ecol Lett 6(9):857–865.

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67.

  • Carrière Y, Ellers-Kirk C, Cattaneo MG, Yafuso CM, Antilla L, Huang CY, Rahman CM, Orr BJ, Marsh SE (2009) Landscape effects of transgenic cotton on non-target ants and beetles. Basic Appl Ecol 10:597–606.

  • Carrière Y, Sisterson MS, Tabashnik BE (2004). Resistance management for sustainable use of Bacillus thuringiensis crops in integrated pest management. In Horowitz AR, Ishaaya I (eds) Insect pest management: field and protected crops. Springer, Berlin, Heidelberg, pp 65–95

  • Chacoff NP, Vazquez DP, Lomascolo SB, Stevani EL, Dorado J, Padron B (2012) Evaluating sampling completeness in a desert plant–pollinator network. J Anim Ecol 81:190–200.

  • Chailleux A, Mohl EK, Teixeira Alves M, Messelink GJ, Desneux N (2014) Natural enemy-mediated indirect interactions among prey species: potential for enhancing biocontrol services in agroecosystems. Pest Manag Sci 70:1769–1779.

  • Chanteloup P, Bonis A (2013) Functional diversity in root and above-ground traits in a fertile grassland shows a detrimental effect on productivity. Basic Appl Ecol 4:208–2016

  • Collins SL, Swinton SM, Anderson CW et al (2007) Integrated science for society and the environment: a strategic research initiative. In: Miscellaneous Publication of the LTER Network, http://www.lternet.edu.

  • Conway G (1987) The properties of agroecosystems. Agric Syst 24:95–117

  • Cook SM, Khan Z, Pickett JA (2007). The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52(52):375–400.

  • Costanza R et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253.

  • Couvet D et al (2016) Services écosystémiques: des compromis aux synergies. In: Roche P et al (eds) Valeurs de la biodiversité et services écosystémiques: Perspectives interdisciplinaires. Editions Quae, 2016.

  • Crowder DW, Northfield TD, Strand MR, Snyder WE (2010). Organic agriculture promotes evenness and natural pest control. Nature 466:109–112.

  • Cumming GS, Olsson P, Chapin FSI et al (2013) Resilience, experimentation, and scale mismatches in social-ecological landscapes Landsc Ecol 28:1139–1150.

  • Dabney SM (1998) Cover crop impacts on watershed hydrology. J Soil Water Cons 53(3):207–213.

  • Daily G (1997) Nature’s services: societal dependence on natural ecosystems. Island Press.

  • Dawkins R (1982) The extended phenotype. Oxford: Oxford University Press, ISBN 0-19-288051-9.

  • de Snoo GR (1999) Unsprayed field margins: effects on environment, biodiversity and agricultural practice. Landsc Urban Plan 46:151–160.

  • DeFries R et al (2015) Metrics for land-scarce agriculture. Science 349:238–240.

  • Decaestecker E, Gaba S, Raeymaekers JAM, Stoks R, Van Kerckhoven L, Ebert D, De Meester L (2007) Host-parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450 870-U16.

  • Denison RF, Kiers ET, West SA (2003). Darwinian agriculture: when can humans find solutions beyond the reach of natural selection? Quart Rev Biol 78:145–168.

  • Derrien D, Dignac MF, Basile-Doelsch I, Barot S, Cécillon L, Chenu C, Barré, P (2016) Stocker du Carbone dans les sols: Quels mécanismes, quelles pratiques agricoles, quels indicateurs ? Étude et Gestion des Sols 23:193–223

  • Di HJ, Cameron KC (2002). Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutr Cycl Agroecosystems 64(3):237–256.

  • Diamond JM (1975) The island dilemma: lessons of modern biogeographic studies for the design of natural reserves. Biol Conserv 7:129–146.

  • Diehl E, Sereda E, Wolters V, Birkhofer K (2013). Effects of predator specialization, host plant and climate on biological control of aphids by natural enemies: a meta‐analysis. J Appl Ecol 50:262–270.

  • Doré T, Makowski D, Malezieux E et al (2011) Facing up to the paradigm of ecological intensification in agronomy: Revisiting methods, concepts and knowledge. Eur J Agron 34:197–210.

  • Duffy JE, Cardinale BJ, France KE, McIntyre PB, Thébault E, Loreau M (2007) The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol Lett 10:522–538.

  • Duflot R, Ernoult A, Burel F, Aviron S (2016). Landscape level processes driving carabid crop assemblage in dynamic farmlands. Popul Ecol 58:265–275.

  • Dunbar MW, Gassmann AJ, O’Neal ME (2016). Impacts of rotation schemes on ground-dwelling beneficial arthropods. Environ Entomol, https://doi.org/10.1093/ee/nvw104

  • Engel S, Pagiola S, Wunder S (2008) Designing payments for environmental services in theory and practice: An overview of the issues. Ecolog Econ 65(4):663–674

  • Ernoult A, Tremauville Y, Cellier D, Margerie P, Langlois E, Alard D (2006) Potential landscape drivers of biodiversity components in a flood plain: Past or present patterns? Biol Conserv 127:1–17.

  • Fahrig L (2007) Non-optimal animal movement in human-altered landscapes. Funct Ecol 21:1003–1015.

  • Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin J-L (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112.

  • Fahrig L, Girard J, Duro D, Pasher J, Smith A, Javorek S, King D, Lindsay KF, Mitchell S, Tischendorf L (2015). Farmlands with smaller crop fields have higher within-field biodiversity. Agric Ecosyst Environ 200:219–234.

  • Faith DP, Magallón S, Hendry AP, Conti E, Yahara T, Donoghue MJ (2010) Evosystem services: an evolutionary perspective on the links between biodiversity and human well-being. Curr Opin Environ Sustain 2:66–74

  • Fontaine C, Guimarães PR, Kéfi S, Loeuille N, Memmott J, van Der Putten WH, van Veen FJ, Thebault E (2011) The ecological and evolutionary implications of merging different types of networks. Ecol Lett 14:1170–1181.

  • Forde B (2002) Local and long range signalling pathways regulating plant response to nitrate. Ann Rev Plant Biol 53:203–224.

  • Frank van Veen FJ, Morris RJ, Godfray HCJ (2006) Apparent competition, quantitative food webs, and the structure of phytophagous insect communities. Annu Rev Entomol 51:187–208.

  • Fraterrigo JM, Pearson SM, Turner MG (2009) Joint effects of habitat configuration and temporal stochasticity on population dynamics. Landsc Ecol 24:863–877.

  • Friedmann H (2016) Towards a natural history of food getting. Soc Rural, https://doi.org/10.1111/soru.12144

  • Gaba S, Bretagnolle F, Rigaud T, Philippot L (2014) Managing biotic interactions for ecological intensification of agroecosystems. Front Ecol Evol 2, https://doi.org/10.3389/fevo.2014.00029.

  • Gaba S, Lescourret F, Boudsocq S, Enjalbert J, Hinsinger P, Journet E-P, Navas M-L, Wery J, Louarn G, Malézieux E, Pelzer E, Prudent M, Ozier-Lafontaine H (2015) Biodiversity as a driver in multispecies cropping systems: new strategies for providing multiple ecosystem services. Agron Sustain Dev 35(2):607–623

  • Gabriel D, Sait SM, Hodgson JA, Schmutz U, Kunin WE, Benton TG (2010) Scale matters: the impact of organic farming on biodiversity at different spatial scales. Ecol Lett 13:858–869.

  • Gardner JB, Drinkwater LE (2009) The fate of nitrogen in grain cropping systems: a meta‐analysis of 15 N field experiments. Ecol Appl 19:2167–2184.

  • Georgelin E, Loeuille N (2014) Dynamics of coupled mutualistic and antagonistic interactions, and their implications for ecosystem management. J Theor Biol 346:67–74.

  • Gliessman SR (2006) Agroecology: the ecology of sustainable food systems. CRC Press, pp 408.

  • Godfray HC J (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press.

  • Godfray HCJ (2015) The debate over sustainable intensification Food Secur 7:199–208.

  • Goodwin BJ, Fahrig L (2002) How does landscape structure influence landscape connectivity? Oikos 99:552–570.

  • Gosme M, de Villemandy M, Bazot M, Jeuffroy MH (2012) Local and neighbourhood effects of organic and conventional wheat management on aphids, weeds, and foliar diseases. Agric Ecosyst Environ 161:121–129.

  • Griffin JN, Byrnes JE, Cardinale BJ (2013) Effects of predator richness on prey suppression: a meta‐analysis. Ecology 94:2180–2187.

  • Griggs D, Stafford-Smith M, Gaffney O, Rockstrom J, Ohman MC, Shyamsundar P, Steffen W, Glaser G, Kanie N, Noble I (2013) Policy: sustainable development goals for people and planet. Nature 495 (7441). (Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved: 305–7).

  • Guenay Y, Ebeling A, Steinauer K, Weisser WW, Eisenhauer N (2013) Transgressive overyielding of soil microbial biomass in a grassland plant diversity gradient. Soil Biol Biochem 60:122–124.

  • Gravel D, Albouy C, Thuiller W (2016) The meaning of functional trait composition of food webs for ecosystem functioning. Phil Trans R Soc B 371: 20150268.

  • Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties. Wiley, New York, USA, pp 417.

  • Hadjikakou M (2017) Trimming the excess: environmental impacts of discretionary food consumption in Australia. Ecol Econ 131:119–128.

  • Hanski I, Ovaskainen O (2002). Extinction debt at extinction threshold. Conserv Biol 16:666–673.

  • Henckel L, Börger L, Meiss H, Gaba S, Bretagnolle V (2015). Organic fields sustain weed metacommunity dynamics in farmland landscapes. Proc R Soc Lond B 282(1808) 20150002

  • Hinsinger P, Betencourt É, Bernard L, Brauman A, Plassard C, Shen J, Tang X, Zhang F (2011) P for Two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol 156(3): 1078–1086.

  • Hinsley SA, Bellamy PE (2000). The influence of hedge structure, management and landscape context on the value of hedgerows to birds: A review. J Environ Manag 60:33–49.

  • Hiron M, Berg Å, Eggers S, Berggren Å, Josefsson J, Pärt T (2015). The relationship of bird diversity to crop and non-crop heterogeneity in agricultural landscapes. Landsc Ecol 1–13.

  • Hoang VN, Alauddin M (2010) Assessing the eco-environmental performance of agricultural production in OECD countries: the use of nitrogen flows and balance. Nutr Cycle Agroecosystem 87:353–368

  • Holland J, Fahrig L (2000) Effect of woody borders on insect density and diversity in crop fields: a landscape-scale analysis. Agric Ecosyst Environ 78:115–122.

  • Holzschuh A, Steffan-Dewenter I, Tscharntke T (2008) Agricultural landscapes with organic crops support higher pollinator diversity. Oikos 117:354–361.

  • Holzschuh A, Dormann CF, Tscharntke T, Steffan-Dewenter I (2011) Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination. Proc R Soc B 278:3444–3451

  • Hoover JK, Newman JA (2004) Tritrophic interactions in the context of climate change: a model of grasses, cereal aphids and their parasitoids. Global Change Biol 10:1197–1208.

  • Jabot F, Bascompte J (2012) Bitrophic interactions shape biodiversity in space. Proc Natl Acad Sci 109:4521–4526.

  • James C (2014) Global status of commercialised biotech/GM Crops: 2014, ISAAA Brief No. 49. International Service for the Acquisition of Agri-Biotech Applications. Ithaca, NY: 978-1-892456-59-1.

  • Jordano P (2016) Sampling networks of ecological interactions. Funct Ecol 30:1883–1893.

  • Jules ES, Shahani P (2003). A broader ecological context to habitat fragmentation: Why matrix habitat is more important than we thought. J Veg Sci 14:459–464.

  • Kaneda S, Kaneko N (2011) Influence of Collembola on nitrogen mineralization varies with soil moisture content. Soil Sci Plant Nutr 57:40–49.

  • Kareiva PM, McNally BW, McCormick S, Miller T, Ruckelshaus M (2015) Improving global environmental management with standard corporate reporting. Proc Natl Acad Sci 112:7375–7382

  • Kessler J, Sperling D (2016). Tracking US biofuel innovation through patents. Energy Policy 98:97–107.

  • Kindlmann P, Burel F. 2008. Connectivity measures: a review. Landsc Ecol 23:879–890.

  • Kladivko EJ (2001) Tillage systems and soil ecology. Soil Tillage Res 61(1): 61–76.

  • Kremen C, Miles A (2012) Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol Soc 17:40.

  • Kromp B (1999). Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agric Ecosyst Environ 74:187–228.

  • Kruess A, Tscharntke T (1994). Habitat fragmentation, species loss, and biological-control. Science 264:1581–1584.

  • Landis DA, Wratten SD, Gurr SM (2000). Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201.

  • Langer A, Hance T (2004) Enhancing parasitism of wheat aphids through apparent competition: a tool for biological control. Agric Ecosyst Environ 102: 205–212.

  • Lavelle P, Spain AV (2001) Soil ecology. Kluwer Academic Publishers, Dordrecht.

  • Le Féon V, Burel F, Chifflet R, Henry M, Ricroch A, Vaissière BE, Baudry J (2013) Solitary bee abundance and species richness in dynamic agricultural landscapes. Agric Ecosyst Environ 166:94–101.

  • Letourneau DK, Jedlicka JA, Bothwell SG, Moreno CR (2009) Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu Rev Ecol Evol Syst 40:573–592.

  • Lescourret F, Magda D, Richard G, Adam-Blondon AF, Bardy M, Baudry J, Doussan I, Dumont B, Lefèvre F, Litrico I, Martin-Clouaire R, Montuelle B, Pellerin S, Plantegenest M, Tancoigne E, Thomas A, Guyomard H, Soussana J-F (2015) A social–ecological approach to managing multiple agro-ecosystem services. Curr Opin Environ Sustain 14:68–75.

  • Levin SA (1992). The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology 73:1943–1967.

  • Liebman M, Dyck E (1993) Crop rotation and intercropping strategies for weed management. Ecol Appl 3:92–122.

  • Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845.

  • Lindeman RL (1942) The trophic‐dynamic aspect of ecology. Ecology 23:399–417.

  • Loeuille N, Barot S, Georgelin E, Kylafis G, Lavigne C (2013). Eco-evolutionary dynamics of agricultural networks: Implications for sustainable management. Adv Ecol Res 49:339–435.

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001). Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808.

  • Loucks O (1977) Emergence of research on agro-ecosystems. Annu Rev Ecol Syst 8:173–192

  • Lövei GL, Andow D, Arpaia S (2009). Transgenic insecticidal crops and natural enemies: a detailed review of laboratory studies. Environ Entomol 38:293–306, https://doi.org/10.1603/022.038.0201.

  • MacArthur R, Wilson E (1967) The theory of island biogeography. Princeton University Press, Princeton, New Jersey.

  • Macfadyen S, Muller W (2013) Edges in agricultural landscapes: species interactions and movement of natural enemies. PLoS ONE 8:e59659.

  • Marrec R, Badenhausser I, Bretagnolle V, Börger L, Roncoroni M, Guillon N, Gauffre B (2015) Crop succession and habitat preferences drive the distribution and abundance of carabid beetles in an agricultural landscape. Agric Ecosyst Environ 199:282–289.

  • May RM (1975) Islands biogeography and the design of wildlife preserves. Nature 254:177–178.

  • Mc Daniel MD, Tiemann LK, Grandy AS (2014) Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta‐analysis. Ecol Appl 24:560–570.

  • Médiène S, Valantin-Morison M, Sarthou J-P, de Tourdonnet S, Gosme M, Bertrand M, Roger-Estrade J, Aubertot JN, Rusch A, Motisi N (2011) Agroecosystem management and biotic interactions: a review. Agron Sustain Dev 31:491–514.

  • Metzger JP, Martensen AC, Dixo M, Bernacci LC, Ribeiro MC, Teixeira AMG, Pardini R (2009) Time-lag in biological responses to landscape changes in a highly dynamic Atlantic forest region. Biol Conserv 142:1166–1177.

  • Millenium Ecosystem Assessment (2005) Ecosystems and human well-being. Washington, DC.

  • Mirtl M, Orenstein DE, Wildenberg M, Peterseil J, Frenzel M (2013) Development of LTSER platforms in LTER-Europe: challenges and experiences in implementing place-based long-term socio-ecological research in selected regions. In: Long term socio-ecological research. Springer Netherlands, pp 409–442

  • Nelson E et al (2009) Modelling multiple ecosystem services, biodiversity conservation, commodity production, and trade-offs at landscape scales. Front Ecol Environ 7: 4–11.

  • Nielsen UN, Wall DH, Six J (2015) Soil biodiversity and the environment. Annu Rev Environ Resour 40:1–28

  • Novak M, Wootton JT, Doak DF, Emmerson M, Estes JA, Tinker MT (2011). Predicting community responses to perturbations in the face of imperfect knowledge and network complexity. Ecology 92:836–846.

  • Obersteiner M et al (2016) Assessing the land resource–food price nexus of the Sustainable Development Goals. Sci Adv 2(9): e1501499.

  • Odling-Smee FJ, Laland KN, Feldman MW (1996). Niche construction. Am Nat 147:641–648.

  • Ostrom E (2007) A diagnostic approach for going beyond panaceas. Proc Natl Acad Sci 104:15181–15187.

  • Paine RT (1980) Food webs: linkage, interaction strength and community infrastructure. J Anim Ecol 49(3): 667–685.

  • Parmele, RW, Crossley Jr DA (1988). Earthworm production and role in the nitrogen cycle of a no tillage agroecosystem on the Georgia piedmont. Pedobiologia 32:353–361.

  • Parsa S, Ccanto R, Rosenheim JA (2011). Resource concentration dilutes a key pest in indigenous potato agriculture. Ecol Appl 21:539–546.

  • Paustian L, Babcock B, Hatfield JL, Lal R, McCarl BA, McLaughlin S, Rosenzweig C (2016) Agricultural mitigation of greenhouse gases: science and policy options. In: 2001 conference proceedings, first national conference on carbon sequestration. Washington, DC: Conference on Carbon Sequestration.

  • Pelosi C, Goulard M, Balent G (2010). The spatial scale mismatch between ecological processes and agricultural management: do difficulties come from underlying theoretical frameworks? Agric Ecosyst Environ 139: 455–462

  • Pelosi C, Barot S, Capowiez Y, Hedde M, Vandenbulcke F (2014) Pesticides and earthworms. A review. Agron Sustain Dev 34:199–228.

  • Pelzer E, Bazot M, Makowski D, Corre-Hellou G, Naudin C, Al Rifai M, Baranger E, Bedoussac L, Biarnes V, Boucheny P, Carrouee B, Dorvillez D, Foissy D, Gaillard B, Guichard L, Mansard MC, Omon B, Prieur L, Yvergniaux M, Justes E, Jeuffroy MH (2012) Pea-wheat intercrops in low-input conditions combine high economic performances and low environmental impacts. Eur J Agron 40:39–53.

  • Petit S, Burel F (1998) Effects of landscape dynamics on the metapopulation of a ground beetle (Coleoptera, Carabidae) in a hedgerow network. Agric Ecosyst Environ 69:243–252.

  • Petit S, Griffiths L, Smart SS, Smith GM, Stuart RC, Wright SM (2004) Effects of area and isolation of woodland patches on herbaceous plant species richness across Great Britain. Landsc Ecol 19:463–471.

  • Phalan B, Balmford A, Green RE et al (2011). Minimising the harm to biodiversity of producing more food globally. Food Policy 36 Suppl 1: S62–S71.

  • Polis GA, Power ME, Huxel GR (2004). Food webs at the landscape level. University of Chicago Press.

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends in Ecol Evol 25:345–353.

  • Puech C, Baudry J, Joannon A, Poggi S, Aviron S (2014) Organic vs. conventional farming dichotomy: does it make sense for natural enemies? Agric Ecosyst Environ 194:48–57.

  • Puech C, Poggi S, Baudry J, Aviron S (2015). Do farming practices affect natural enemies at the landscape scale? Landsc Ecol 30:125–140.

  • Purtauf T, Dauber J, Wolters V (2004) Carabid communities in the spatio-temporal mosaic of a rural landscape. Landsc Urban Plan 67:185–193.

  • Rand TA, Tscharntke T. 2007. Contrasting effects of natural habitat loss on generalist and specialist aphid natural enemies. Oikos 116:1353-1362.

  • Rand TA, Tylianakis JM, Tscharntke T (2006). Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9:603–614.

  • Ratnadass A, Fernandes P, Avelino J, Habib R (2012). Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sustain Dev 32: 273–303.

  • Redman CL, Grove JM, Kuby LH (2004) Integrating social science into the long-term ecological research (LTER) network: Social dimensions of ecological change and ecological dimensions of social change. Ecosystems 7:161–171.

  • Ricketts TH (2001) The matrix matters: Effective isolation in fragmented landscapes. Am Nat 158:87–99.

  • Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A, Gemmill-Herren B, Greenleaf SS, Klein AM, Mayfield MM, Morandin LA, Ochieng A, Viana BF (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11:499–515.

  • Roger-Estrade J, Anger C, Bertrand M, Richard G (2010) Tillage and soil ecology: partners for sustainable agriculture. Soil Tillage Res 111(1): 33–40.

  • Romo CM, Tylianakis JM (2013). Elevated temperature and drought interact to reduce parasitoid effectiveness in suppressing hosts. PLoS ONE 8:e58136.

  • Rosenheim JA, Kaya HK, Ehler LE, Marois JJ, Jaffee BA (1995) Intraguild predation among biological-control agents: theory and evidence. Biol Control 5:303–335.

  • Rusch A, Valantin-Morison M, Sarthou J-P, Roger-Estrade J (2011) Multi-scale effects of landscape complexity and crop management on pollen beetle parasitism rate. Landsc Ecol 26:473–486.

  • Sarrazin F, Lecomte J (2016) Evolution in the Anthropocene. Science 351:922–923.

  • Schmitz OJ (2007) Predator diversity and trophic interactions. Ecology 88:2415–2426.

  • Schouten G, Bitzer V (2015) The emergence of Southern standards in agricultural value chains: a new trend in sustainability governance? Ecol Econ 120:175–184.

  • Seto KC, Ramankutty N (2016) Hidden linkages between urbanization and food systems. Science 352:943–945.

  • Shelton AM, Badenes-Perez FR (2006) Concepts and applications of trap cropping in pest management. Annu Rev Entomol 51:285–308.

  • Shennan C (2008) Biotic interactions, ecological knowledge and agriculture. Philos Trans R Soc B Biol Sci 363:717–739.

  • Sirami C, Nespoulous A, Cheylan JP, Marty P, Hvenegaard GT, Geniez P, Schatz B, Martin J-L (2010). Long-term anthropogenic and ecological dynamics of a Mediterranean landscape: Impacts on multiple taxa. Landsc Urban Plan 96:214–223.

  • Smith P, Martino D, Cai Z et al (2008) Greenhouse gas mitigation in agriculture. Philosophical Trans R Society London B Biological Sciences 363:789–813.

  • Swift MJ, Izac AMN, van Noordwijk M (2004) Biodiversity and ecosystem services in agricultural landscapes - are we asking the right questions? Agric Ecosyst Environ 104: 113–134.

  • Symondson W, Sunderland K, Greenstone M (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594.

  • Tancoigne et al. (2014) The place of agricultural sciences in the literature on ecosystem services. Ecosyst Serv 10:35–48.

  • Tewksbury JJ, Levey DJ, Haddad NM, Sargent S, Orrock JL, Weldon A, Danielson BJ, Brinkerhoff J, Damschen EI, Townsend P (2002) Corridors affect plants, animals, and their interactions in fragmented landscapes. Proc Natl Acad Sci 99:12923–12926.

  • Thies C, Roschewitz I, Tscharntke T (2005) The landscape context of cereal aphid–parasitoid interactions. Proc R Soc B Biol Sci 272:203–210.

  • Thies C, Steffan-Dewenter I, Tscharntke T (2003) Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos 101:18–25.

  • Thies C, Steffan-Dewenter I, Tscharntke T (2008). Interannual landscape changes influence plant–herbivore–parasitoid interactions. Agric Ecosyst Environ 125:266–268.

  • Thrall PH, Oakeshott JG, Fitt G, Southerton S, Burdon JJ, Sheppard A, Russell RJ, Zalucki M, Heino M, Ford Denison R (2011) Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agro‐ecosystems. Evol Appl 4:200–215.

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284.

  • Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Annu Rev Ecol Evol Syst 45(1):471.

  • Tilman D, May RM, Lehman CL, Nowak MA. (1994). Habitat destruction and the extinction debt. Nature 371:65–66.

  • Tittonell P, Klerkx L, Baudron F, Félix GF, Ruggia A, van Apeldoorn D, Dogliotti S, Mapfumo P, Rossing PAH (2016) Ecological intensification: local innovation to address global challenges. Sustain Agric Rev 19: 1–34 (Chap. 1).

  • Tixier P, Peyrard N, Aubertot J-N, Gaba S, Radoszycki J, Caron-Lormier G, Vinatier F, Mollot G, Sabbadin R (2013). Modelling interaction networks for enhanced ecosystem services in agroecosystems. Adv Ecol Res 49:437–480.

  • Tomich TP, Brodt S, Ferris H, Galt R, Horwath WR, Kebreab E, Leveau JHJ, Liptzin D, Lubell M, Merel P, Michelmore R, Rosenstock T, Scow K, Six J, Williams N, Yang L (2013) Agroecology: a review from a global-change perspective. Annu Rev Environ Resour 36:193–222.

  • Trenbath B (1993)Intercropping for the management of pests and diseases. Field Crops Res 34:381–405.

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol Lett 8:857–874.

  • Tscharntke T, Karp DS, Chaplin-Kramer R, Batáry P, DeClerck F, Gratton C, Martin EA (2016) When natural habitat fails to enhance biological pest control–Five hypotheses. Biol Conserv Part B 204:449–458.

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363.

  • van der Heijden MG, Bardgett RD, Stralen N (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310.

  • van Groenigen JW, Lubbers IM, Vos HMJ, Brown GG, De Deyn GB, van Groenigen KJ (2014) Earthworms increase plant production: a meta-analysis. Sci Rep 4:63–65.

  • Vandermeer JH (1992) The ecology of intercropping. Cambridge University Press.

  • Vanloqueren G, Baret PV (2009) How agricultural research systems shape a technological regime that develops genetic engineering but locks out agroecological innovations. Res Policy 38:971–983.

  • Vasseur C, Joannon A, Aviron S, Burel F, Meynard J-M, Baudry J (2013) The cropping systems mosaic: How does the hidden heterogeneity of agricultural landscapes drive arthropod populations? Agric Ecosyst Environ 166:3–14.

  • Vos CC, Goedhart PW, Lammertsma DR, Spitzen-Van der Sluijs AM (2007) Matrix permeability of agricultural landscapes: an analysis of movements of the common frog (Rana temporaria). Herpetol J 17:174–182.

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633.

  • Westphal MI, Field SA, Tyre AJ, Paton D, Possingham HP (2003). Effects of landscape pattern on bird species distribution in the Mt. Lofty Ranges, South Australia. Landsc Ecol 18:413–426.

  • Wezel A, Bellon S, Doré T, Francis C, Vallod D, David C (2009) Agroecology as a science, a movement and a practice. A review. Agron Sustain Dev 29(4): 503–515.

  • Wimberly MC (2006) Species dynamics in disturbed landscapes: When does a shifting habitat mosaic enhance connectivity? Landsc Ecol 21:35–46.

  • Wolfson DJ (2014). Who gets what in environmental policy? Ecol Econ 102:8–14.

  • Wretenberg J, Pärt T, Berg Å (2010) Changes in local species richness of farmland birds in relation to land-use changes and landscape structure. Biol Conserv 143:375–381.

  • Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–2050.

  • Zaller JG, Moser D, Drapela T, Schmöger C, Frank T (2009). Parasitism of stem weevils and pollen beetles in winter oilseed rape is differentially affected by crop management and landscape characteristics. Biocontrol 54:505–514.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaba, S. et al. (2018). Ecology for Sustainable and Multifunctional Agriculture. In: Gaba, S., Smith, B., Lichtfouse, E. (eds) Sustainable Agriculture Reviews 28. Sustainable Agriculture Reviews, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-90309-5_1

Download citation

Publish with us

Policies and ethics