Advertisement

Neonatal Critical Care Nephrology

  • David AskenaziEmail author
  • Vesna Stojanović
Chapter

Abstract

Extraordinary advancements in neonatal care have markedly reduced mortality of infants hospitalized in Neonatal Intensive Care Unit (NICU). Over the last decade, studies show that neonatal acute kidney injury (AKI) is common and those with AKI have higher mortality and prolonged length of stay. The most common accepted definition of the neonatal AKI is based on a rise in serum creatinine and/or decrease in urine output. Premature infants are born with low nephron numbers which predisposes them to AKI and chronic kidney disease (CKD). Despite recent insights that substantiate the impact of poor kidney health on outcomes in sick neonates, significant critical gaps in our understanding of the antenatal and postnatal factors exist. The global burden of AKI and CKD in NICU graduates need to be better understood. Fortunately, progress is being made as investigators are performing large observational studies, and randomized clinical trials that evaluate risk factors, outcomes, and interventions. Peritoneal dialysis is a method of choice for kidney function replacement in newborns. In addition, novel machines, with smaller extracorporeal volume, designed to provide renal support for neonates have been designed and are currently in use in a few centers around the world.

Keywords

Acute kidney injury Newborn ADD ACUTE RENAL FAILURE 

References

  1. 1.
    Hinchliffe SA, Sargent PH, Howard CV, Chan YF, van Velzen D. Human intrauterine renal growth expressed in absolute number of glomeruli assessed by the disector method and Cavalieri principle. Lab Investig. 1991;64(6):777–84.PubMedGoogle Scholar
  2. 2.
    Saint-Faust M, Boubred F, Simeoni U. Renal development and neonatal adaptation. Am J Perinatol. 2014;31(9):773–80.CrossRefPubMedGoogle Scholar
  3. 3.
    Selewski DT, Charlton JR, Jetton JG, Guillet R, Mhanna MJ, Askenazi DJ, et al. Neonatal acute kidney injury. Pediatrics. 2015;136(2):e463–73.CrossRefPubMedGoogle Scholar
  4. 4.
    Abitbol CL, Seeherunvong W, Galarza MG, Katsoufis C, Francoeur D, Defreitas M, et al. Neonatal kidney size and function in preterm infants: what is a true estimate of glomerular filtration rate? J Pediatr. 2014;41(3):487–502.Google Scholar
  5. 5.
    Schwartz GJ, Gauthier B. A simple estimate of glomerular filtration rate in adolescent boys. J Pediatr. 1985;106(3):522–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Sulemanji M, Khashayar V. Neonatal renal physiology. Semin Pediatr Surg. 2013;22:195–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Gubhaju L, Sutherland MR, Horne RSC, Medhurst A, Kent AL, Ramsden A, et al. Assessment of renal functional maturation and injury in preterm neonates during the first month of life. Am J Physiol Renal Physiol. 2014;307:F149–58.CrossRefPubMedGoogle Scholar
  8. 8.
    Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59(3):251–87.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ottonello G, Dessi A, Neroni P, Trudu ME, Fanos V. Acute kidney injury in neonatal age. J Pediatr Neonat Individual Med. 2014;3(2):e030246.Google Scholar
  10. 10.
    Askenazi DJ, Ambalavanan N, Goldstein LS. Acute kidney injury in critically ill newborns: what do we know? What do we need to learn? Pediatr Nephrol. 2009;24(2):265–74.CrossRefPubMedGoogle Scholar
  11. 11.
    Koralkar R, Ambalavanan N, Levitan EB, McGwin G, Goldstein S, Askenazi D. Acute kidney injury reduces survival in very low birth weight infants. Pediatr Res. 2011;69(4):354–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Bezerra CT, Van Cunha LC, Liborio AB. Defining reduced urine output in neonatal ICU: importance for mortality and acute kidney injury classification. Nephrol Dial Transplant. 2013;28(4):901–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Ricci Z, Ronco C. Neonatal RIFLE. Nephrol Dial Transplant. 2013;28(9):2211–4.CrossRefPubMedGoogle Scholar
  14. 14.
    Stojanović V, Barišić N, Radovanović T, Bjelica M, Milanović B, Doronjski A. Acute kidney injury in premature newborns-definition, etiology, and outcome. Pediatr Nephrol. 2017;32(10):1963–70.CrossRefPubMedGoogle Scholar
  15. 15.
    Askenazi DJ, Montesanti A, Hunley H, Koralkar R, Pawar P, Shuaib F, et al. Urine biomarkers predict acute kidney injury and mortality in very low birth weight infants. J Pediatr. 2011;159:907–12.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wong JH, Selewski DT, Yu S, Leopold KE, Roberts KH, Donohue JE, et al. Severe acute kidney injury following stage 1 Norwood palliation: effect on outcomes and risk of severe acute kidney injury at subsequent surgical stages. Pediatr Crit Care Med. 2016;17(7):615–23.CrossRefPubMedGoogle Scholar
  17. 17.
    Mathur NB, Agarwal HS, Maria A. Acute renal failure in neonatal sepsis. Indian J Pediatr. 2006;73(6):499–502.CrossRefPubMedGoogle Scholar
  18. 18.
    Sarkar S, Askenazi DJ, Jordan BK, Bhagat I, Bapuraj JR, Dechert RE, et al. Relationship between acute kidney injury and brain MRI findings in asphyxiated newborns after therapeutic hypothermia. Pediatr Res. 2014;75(3):431–5.CrossRefPubMedGoogle Scholar
  19. 19.
    Selewski DT, Jordan BK, Askenazi DJ, Dechert RE, Sarkar S. Acute kidney injury in asphyxiated newborns treated with therapeutic hypothermia. J Pediatr. 2013;162(4):725–9.e1.CrossRefPubMedGoogle Scholar
  20. 20.
    Askenazi DJ, Koralkar R, Hundley HE, Montesanti A, Patil N, Ambalavanan N. Fluid overload and mortality are associated with acute kidney injury in sick near-term/term neonate. Pediatr Nephrol. 2013;28(4):661–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Askenazi DJ, Ambalavanan N, Hamilton K, Cutter G, Laney D, Kaslow R, et al. Acute kidney injury and renal replacement therapy independently predict mortality in neonatal and pediatric noncardiac patients on extracorporeal membrane oxygenation. Pediatr Crit Care Med. 2011;12(1):e1–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Askenazi DJ, Griffin R, McGwin G, Carlo W, Ambalavanan N. Acute kidney injury is independently associated with mortality in very low birthweight infants: a matched case-control analysis. Pediatr Nephrol. 2009;24(5):991–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Carmody JB, Swanson JR, Rhone ET, Charlton JR. Recognition and reporting of AKI in very low birth weight infants. Clin J Am Soc Nephrol. 2014;9(12):2036–43.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Stojanovic V, Barisic N, Milanovic B, Doronjski A. Acute kidney injury in preterm infants admitted to a neonatal intensive care unit. Pediatr Nephrol. 2014;29(11):2213–20.CrossRefPubMedGoogle Scholar
  25. 25.
    Jetton JG, Boohaker LJ, Sethi SK, Wazir S, Rohatgi S, Soranno DE, et al. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): a multicentre, multinational, observational cohort study. Lancet. 2017;1(3):184–94.PubMedGoogle Scholar
  26. 26.
    Weintraub AS, Connors J, Blanco V, Green RS. The spectrum of onset of acute kidney injury in premature infants less than 30 weeks gestation. J Perinatol. 2016;36:474–80.CrossRefPubMedGoogle Scholar
  27. 27.
    Bakr AF. Peophylactic theophylline to prevent renal dysfunction in newborns exposed to perinatal asphyxia – a study in a developing country. Pediatr Nephrol. 2005;20:1249–52.CrossRefPubMedGoogle Scholar
  28. 28.
    Friedrich JO, Adhikari N, Herridge MS, Beyene J. Metaanalysis: low-dose dopamine increase urine output but does not prevent renal dysfunction or death. Ann Intern Med. 2005;142:510–24.CrossRefPubMedGoogle Scholar
  29. 29.
    Ricci Z, Luciano R, Favia I, Gariso G, Muraca M, Morelli S, et al. High-dose fenoldopam reduces postoperative neutrophil gelatinase-associated lipocaline and cystatin C levels in pediatric cardiac surgery. Crit Care. 2015;15(3):R160.CrossRefGoogle Scholar
  30. 30.
    Pandey V, Dummula K, Go M, Parimi P. Bumetanide use in the management of oliguric preterm infants with acute kidney injury–a single center experience. J Clin Pediatr Nephrol. 2015.  https://doi.org/10.15401/jcpn/2014/v2i2/66346.
  31. 31.
    Ho KM, Sheridan D. Meta-analysis of furosemide to prevent or treat acute renal failure. BMJ. 2006;333:420–3.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hobbs DJ, Steinke JM, Chung JY, Barletta GM, Bunchman TE. Rasburicase improves hyperuricemia in infants with acute kidney injury. Pediatr Nephrol. 2010;25(2):305–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Pandey V, Kumar D, Vijayaraghavan P, Chaturvedi T, Raina R. Non-dialytic management of acute kidney injury in newborns. J Renal Inj Prev. 2017;6(1):1–11.CrossRefPubMedGoogle Scholar
  34. 34.
    Gouyon JB, Guignard JP. Management of acute renal failure in newborns. Pediatr Nephrol. 2000;14:1037–44.CrossRefPubMedGoogle Scholar
  35. 35.
    Alparslan C, Yavascan O, Bal A, Kanik A, Kose E, Kasap Demir B, et al. The performance of acute peritoneal dialysis treatment in neonatal period. Ren Fail. 2012;34(8):1015–20.CrossRefPubMedGoogle Scholar
  36. 36.
    Sasser WC, Dabal RJ, Askenazi DJ, Borasino S, Moellinger AB, Kirklin JK, et al. Prophylactic peritoneal dialysis following cardiopulmonary bypass in children is associated with decreased inflammation and improved clinical outcomes. Congenit Heart Dis. 2014;9(2):106–15.CrossRefPubMedGoogle Scholar
  37. 37.
    Kwiatkowski DM, Menon S, Krawszeski CD, Goldstein SL, Morales LSD, Philips A, et al. Improved outcomes with peritoneal dialysis catheter placement after cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg. 2015;149:230–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Stojanović V, Bukarica S, Antić J, Doronjski A. Peritoneal dialysis in very low birth weight neonates. Perit Dial Int. 2017;37(4):389–96.CrossRefPubMedGoogle Scholar
  39. 39.
    Stojanović V, Bukarica S, Doronjski A, Marinković S. Peritoneal dialysis in neonates with extremely low body weight at birth: new modality of using IV cannula for peritoneal access. Iran J Pediatr. 2013;23(6):718–20.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Unal S, Bilgin L, Gunduz M, Uncu N, Azili MN, Tiryaki T. The implementation of neonatal peritoneal dialysis in a clinical setting. J Matern Fetal Neonatal Med. 2012;25:2111–4.CrossRefPubMedGoogle Scholar
  41. 41.
    Askenazi DJ, Goldstein SL, Koralkar R, Fortenberry J, Baum M, Hackbarth R, et al. Continuous renal replacement therapy for children </=10 kg: a report from the prospective pediatric continuous renal replacement therapy registry. J Pediatr. 2013;162(3):587–92.e3.CrossRefPubMedGoogle Scholar
  42. 42.
    Ronco C, Garzotto F, Brendolan A, Zanella M, Bellettato M, Vedovato S, et al. Continuous renal replacement therapy in neonates and small infants: development and first-in-human use of a miniaturised machine (CARPEDIEM). Lancet. 2014;383(9931):1807–13.CrossRefPubMedGoogle Scholar
  43. 43.
    Coulthard MG, Crosier J, Griffiths C, Smith J, Drinnan M, Whitaker M, et al. Haemodialysing babies weighing <8 kg with the Newcastle infant dialysis and ultrafiltration system (Nidus): comparison with peritoneal and conventional haemodialysis. Pediatr Nephrol. 2014;29(10):1873–81.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Askenazi D, Ingram D, White S, Cramer M, Borasino S, Coghill C, et al. Smaller circuits for smaller patients: improving renal support therapy with Aquadex™. Pediatr Nephrol. 2016;31(5):853–60.CrossRefPubMedGoogle Scholar
  45. 45.
    Bertram JF, Douglas-Denton RN, Diouf B, Hughson MD, Hoy WE. Human nephron number: implications for health and disease. Pediatr Nephrol. 2011;26(9):1529–33.CrossRefPubMedGoogle Scholar
  46. 46.
    Levin A, Tonelli M, Bonventre J, Coresh J, Donner JA, Fogo AB, et al. Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. Lancet. 2017;390(10105):1888–917.CrossRefPubMedGoogle Scholar
  47. 47.
    White SL, Perkovic V, Cass A, Chang CL, Poulter NR, Spector T, et al. Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am J Kidney Dis. 2009;54(2):248–61.CrossRefPubMedGoogle Scholar
  48. 48.
    Askenazi DJ, Feig DI, Graham NM, Hui-Stickle S, Goldstein SL. 3–5 year longitudinal follow-up of pediatric patients after acute renal failure. Kidney Int. 2006;69(1):184–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Pediatric Nephrology, Department of PediatricsPediatric and Infant Center for Acute Nephrology, University of Alabama at BirminghamBirminghamUSA
  2. 2.Medical Faculty, Department of PediatricsNovi SadSerbia
  3. 3.Intermediate Intensive Care UnitInstitute of Child and Youth Health Care of VojvodinaNovi SadSerbia

Personalised recommendations