Critical Care Nephrology and Renal Replacement Therapy in Children: Timing of Initiation of CRRT

  • David M. Kwiatkowski
  • Catherine D. KrawczeskiEmail author
  • David T. Selewski


This chapter reviews the mechanisms and impact of fluid overload, indications for renal replacement therapy, and factors considered in the timing of initiation in critically ill pediatric patients. Recent literature focused on the timing of initiation of CRRT to treat fluid overload is reviewed as well as the use of continuous renal replacement therapy (CRRT) in critically ill patients, peritoneal dialysis after cardiac surgery, and ultrafiltration during extracorporeal membrane oxygenation and during cardiopulmonary bypass.


Acute kidney injury Fluid overload Peritoneal dialysis Renal replacement therapy Continuous veno-venous hemofiltration Cardiorenal interactions 


  1. 1.
    Sutherland SM, Zappitelli M, Alexander SR, Chua AN, Brophy PD, Bunchman TE, et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis. 2010;55(2):316–25.CrossRefGoogle Scholar
  2. 2.
    Hazle MA, Gajarski RJ, Yu S, Donohue J, Blatt NB. Fluid overload in infants following congenital heart surgery. Pediatr Crit Care Med. 2013;14(1):44.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Selewski DT, Cornell TT, Lombel RM, Blatt NB, Han YY, Mottes T, et al. Weight-based determination of fluid overload status and mortality in pediatric intensive care unit patients requiring continuous renal replacement therapy. Intensive Care Med. 2011;37(7):1166–73.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kirkpatrick AW, Roberts DJ, De Waele J, Jaeschke R, Malbrain ML, De Keulenaer B, et al. Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med. 2013;39(7):1190–206.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sutherland SM, Goldstein SL, Alexander SR. The prospective pediatric continuous renal replacement therapy (ppCRRT) registry: a critical appraisal. Pediatr Nephrol. 2014;29(11):2069–76.CrossRefPubMedGoogle Scholar
  6. 6.
    Heung M, Wolfgram DF, Kommareddi M, Hu Y, Song PX, Ojo AO. Fluid overload at initiation of renal replacement therapy is associated with lack of renal recovery in patients with acute kidney injury. Nephrol Dial Transplant. 2012;27(3):956–61.CrossRefPubMedGoogle Scholar
  7. 7.
    Hassinger AB, Wald EL, Goodman DM. Early postoperative fluid overload precedes acute kidney injury and is associated with higher morbidity in pediatric cardiac surgery patients. Pediatr Crit Care Med. 2014;15(2):131–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Wilder NS, Yu S, Donohue JE, Goldberg CS, Blatt NB. Fluid overload is associated with late poor outcomes in neonates following cardiac surgery. Pediatr Crit Care Med. 2016;17(5):420–7.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Seguin J, Albright B, Vertullo L, Lai P, Dancea A, Bernier P-L, et al. Extent, risk factors, and outcome of fluid overload after pediatric heart surgery*. Crit Care Med. 2014;42(12):2591–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Valentine S, Sapru A, Higgerson R, Spinella P, Flori H, Graham D, et al. Pediatric acute lung injury and Sepsis Investigator’s (PALISI) network; acute respiratory distress syndrome clinical research network (ARDSNet). Fluid balance in critically ill children with acute lung injury. Crit Care Med. 2012;40(10):2883–9.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Arikan AA, Zappitelli M, Goldstein SL, Naipaul A, Jefferson LS, Loftis LL. Fluid overload is associated with impaired oxygenation and morbidity in critically ill children*. Pediatr Crit Care Med. 2012;13(3):253–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Bouchard J, Soroko SB, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP, et al. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009;76(4):422–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Mah KE, Hao S, Sutherland SM, Kwiatkowski DM, Axelrod DM, Almond CS, et al. Fluid overload independent of acute kidney injury predicts poor outcomes in neonates following congenital heart surgery. Pediatr Nephrol. 2018;33(3):511–20.CrossRefPubMedGoogle Scholar
  14. 14.
    Akcan-Arikan A, Gebhard DJ, Arnold MA, Loftis LL, Kennedy CE. Fluid overload and kidney injury score: a multidimensional real-time assessment of renal disease burden in the critically ill patient. Pediatr Crit Care Med. 2017;18(6):524–30.CrossRefPubMedGoogle Scholar
  15. 15.
    Alobaidi R, Morgan C, Basu RK, Stenson E, Featherstone R, Majumdar SR, et al. Associations between fluid balance and outcomes in critically ill children: a protocol for a systematic review and meta-analysis. Can J Kidney Health Dis. 2017;4:2054358117692560.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Goldstein SL, Currier H, Graf JM, Cosio CC, Brewer ED, Sachdeva R. Outcome in children receiving continuous venovenous hemofiltration. Pediatrics. 2001;107(6):1309–12.CrossRefPubMedGoogle Scholar
  17. 17.
    Sinitsky L, Walls D, Nadel S, Inwald DP. Fluid overload at 48 hours is associated with respiratory morbidity but not mortality in a general PICU: retrospective cohort study. Pediatr Crit Care Med. 2015;16(3):205–9.CrossRefPubMedGoogle Scholar
  18. 18.
    van Asperen Y, Brand PL, Bekhof J. Reliability of the fluid balance in neonates. Acta Paediatr. 2012;101(5):479–83.CrossRefPubMedGoogle Scholar
  19. 19.
    Askenazi DJ, Koralkar R, Hundley HE, Montesanti A, Patil N, Ambalavanan N. Fluid overload and mortality are associated with acute kidney injury in sick near-term/term neonate. Pediatr Nephrol. 2013;28(4):661–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Selewski DT, Cornell TT, Blatt NB, Han YY, Mottes T, Kommareddi M, et al. Fluid overload and fluid removal in pediatric patients on extracorporeal membrane oxygenation requiring continuous renal replacement therapy. Crit Care Med. 2012;40(9):2694.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Basu RK, Andrews A, Krawczeski C, Manning P, Wheeler DS, Goldstein SL. Acute kidney injury based on corrected serum creatinine is associated with increased morbidity in children following the arterial switch operation. Pediatr Crit Care Med. 2013;14(5):e218–e24.CrossRefPubMedGoogle Scholar
  22. 22.
    Liu KD, Thompson BT, Ancukiewicz M, Steingrub JS, Douglas IS, Matthay MA, et al. Acute kidney injury in patients with acute lung injury: impact of fluid accumulation on classification of acute kidney injury and associated outcomes. Crit Care Med. 2011;39(12):2665.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Macedo E, Bouchard J, Soroko SH, Chertow GM, Himmelfarb J, Ikizler TA, et al. Crit Care. 2010;14(3):R82.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kellum JA, Leblanc M, Gibney RTN, Tumlin J, Lieberthal W, Ronco C. Primary prevention of acute renal failure in the critically ill. Curr Opin Crit Care. 2005;11(6):537–41.PubMedGoogle Scholar
  25. 25.
    Sampath S, Moran JL, Graham PL, Rockliff S, Bersten AD, Abrams KR. The efficacy of loop diuretics in acute renal failure: assessment using Bayesian evidence synthesis techniques. Crit Care Med. 2007;35(11):2516–24.CrossRefPubMedGoogle Scholar
  26. 26.
    Mehta RL, Pascual MT, Soroko S, Chertow GM, Group P.S. Diuretics, mortality, and nonrecovery of renal function in acute renal failure. JAMA. 2002;288(20):2547–53.CrossRefPubMedGoogle Scholar
  27. 27.
    Bagshaw SM, Bellomo R, Kellum JA. Oliguria, volume overload, and loop diuretics. Crit Care Med. 2008;36(4):S172–S8.CrossRefPubMedGoogle Scholar
  28. 28.
    van der Vorst MM, Kist JE, van der Heijden AJ, Burggraaf J. Diuretics in pediatrics. Pediatr Drugs. 2006;8(4):245–64.CrossRefGoogle Scholar
  29. 29.
    Regen RB, Gonzalez A, Zawodniak K, Leonard D, Quigley R, Barnes AP, et al. Tolvaptan increases serum sodium in pediatric patients with heart failure. Pediatr Cardiol. 2013;34(6):1463–8.CrossRefPubMedGoogle Scholar
  30. 30.
    McDonald RH Jr, Goldberg LI, McNay JL, Tuttle EP Jr. Effects of dopamine in man: augmentation of sodium excretion, glomerular filtration rate, and renal plasma flow. J Clin Invest. 1964;43(6):1116.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Prins I, Plötz FB, Uiterwaal CS, van Vught HJ. Low-dose dopamine in neonatal and pediatric intensive care: a systematic review. Intensive Care Med. 2001;27(1):206–10.CrossRefPubMedGoogle Scholar
  32. 32.
    Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J. Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet. 2000;356(9248):2139–43.CrossRefPubMedGoogle Scholar
  33. 33.
    Axelrod DM, Anglemyer AT, Sherman-Levine SF, Zhu A, Grimm PC, Roth SJ, et al. Initial experience using aminophylline to improve renal dysfunction in the pediatric cardiovascular ICU. Pediatr Crit Care Med. 2014;15(1):21–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Costello JM, Thiagarajan RR, Dionne RE, Allan CK, Booth KL, Burmester M, et al. Initial experience with fenoldopam after cardiac surgery in neonates with an insufficient response to conventional diuretics. Pediatr Crit Care Med. 2006;7(1):28–33.CrossRefPubMedGoogle Scholar
  35. 35.
    Ricci Z, Luciano R, Favia I, Garisto C, Muraca M, Morelli S, et al. High-dose fenoldopam reduces postoperative neutrophil gelatinase-associated lipocaline and cystatin C levels in pediatric cardiac surgery. Crit Care. 2011;15(3):R160.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ricci Z, Stazi GV, Di Chiara L, Morelli S, Vitale V, Giorni C, et al. Fenoldopam in newborn patients undergoing cardiopulmonary bypass: controlled clinical trial. Interact Cardiovasc Thorac Surg. 2008;7(6):1049–53.CrossRefPubMedGoogle Scholar
  37. 37.
    Axelrod DM, Sutherland SM, Anglemyer A, Grimm PC, Roth SJ. A double-blinded, randomized, placebo-controlled clinical trial of aminophylline to prevent acute kidney injury in children following congenital heart surgery with cardiopulmonary bypass. Pediatr Crit Care Med. 2016;17(2):135.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yoder SE, Yoder BA. An evaluation of off-label fenoldopam use in the neonatal intensive care unit. Am J Perinatol. 2009;26(10):745–50.CrossRefPubMedGoogle Scholar
  39. 39.
    Tamburro RF, Thomas NJ, Ceneviva GD, Dettorre MD, Brummel GL, Lucking SE. A prospective assessment of the effect of aminophylline therapy on urine output and inflammation in critically ill children. Front Pediatr. 2014;2:59.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Warady BA, Bunchman T. Dialysis therapy for children with acute renal failure: survey results. Pediatr Nephrol. 2000;15(1–2):11–3.CrossRefPubMedGoogle Scholar
  41. 41.
    Walters S, Porter C, Brophy PD. Dialysis and pediatric acute kidney injury: choice of renal support modality. Pediatr Nephrol. 2009;24(1):37–48.CrossRefGoogle Scholar
  42. 42.
    Sutherland SM, Alexander SR. Continuous renal replacement therapy in children. Pediatr Nephrol. 2012;27(11):2007–16.CrossRefPubMedGoogle Scholar
  43. 43.
    Symons JM, Chua AN, Somers MJ, Baum MA, Bunchman TE, Benfield MR, et al. Demographic characteristics of pediatric continuous renal replacement therapy: a report of the prospective pediatric continuous renal replacement therapy registry. Clin J Am Soc Nephrol. 2007;2(4):732–8.CrossRefGoogle Scholar
  44. 44.
    Foland JA, Fortenberry JD, Warshaw BL, Pettignano R, Merritt RK, Heard ML, et al. Fluid overload before continuous hemofiltration and survival in critically ill children: a retrospective analysis. Crit Care Med. 2004;32(8):1771–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Hayes LW, Oster RA, Tofil NM, Tolwani AJ. Outcomes of critically ill children requiring continuous renal replacement therapy. J Crit Care. 2009;24(3):394–400.CrossRefPubMedGoogle Scholar
  46. 46.
    Goldstein SL. Continuous renal replacement therapy: mechanism of clearance, fluid removal, indications and outcomes. Curr Opin Pediatr. 2011;23(2):181–5.CrossRefPubMedGoogle Scholar
  47. 47.
    Selewski DT, Goldstein SL. The role of fluid overload in the prediction of outcome in acute kidney injury. Pediatr Nephrol. 2018;33(1):13–24.CrossRefPubMedGoogle Scholar
  48. 48.
    Modem V, Thompson M, Gollhofer D, Dhar AV, Quigley R. Timing of continuous renal replacement therapy and mortality in critically ill children*. Crit Care Med. 2014;42(4):943–53.CrossRefPubMedGoogle Scholar
  49. 49.
    Gulla KM, Sachdev A, Gupta D, Gupta N, Anand K, Pruthi PK. Continuous renal replacement therapy in children with severe sepsis and multiorgan dysfunction – a pilot study on timing of initiation. Indian J Crit Care Med. 2015;19(10):613–7.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Madenci AL, Thiagarajan RR, Stoffan AP, Emani SM, Rajagopal SK, Weldon CB. Characterizing peritoneal dialysis catheter use in pediatric patients after cardiac surgery. J Thorac Cardiovasc Surg. 2013;146(2):334–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Kellum JA, Lameire N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (part 1). Crit Care. 2013;17(1):204.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure–definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the acute Dialysis quality initiative (ADQI) group. Crit Care. 2004;8(4):R204.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Dittrich S, Aktuerk D, Seitz S, Mehwald P, Schulte-Mönting J, Schlensak C, et al. Effects of ultrafiltration and peritoneal dialysis on proinflammatory cytokines during cardiopulmonary bypass surgery in newborns and infants. Eur J Cardiothorac Surg. 2004;25(6):935–40.CrossRefPubMedGoogle Scholar
  54. 54.
    Madenci AL, Stoffan AP, Rajagopal SK, Blinder JJ, Emani SM, Thiagarajan RR, et al. Factors associated with survival in patients who undergo peritoneal dialysis catheter placement following cardiac surgery. J Pediatr Surg. 2013;48(6):1269–76.CrossRefPubMedGoogle Scholar
  55. 55.
    Kwiatkowski DM, Goldstein SL, Cooper DS, Nelson DP, Morales DS, Krawczeski CD. Peritoneal dialysis vs furosemide for prevention of fluid overload in infants after cardiac surgery: a randomized clinical trial. JAMA Pediatr. 2017;171:357.CrossRefPubMedGoogle Scholar
  56. 56.
    Ryerson LM, Mackie AS, Atallah J, Joffe AR, Rebeyka IM, Ross DB, et al. Prophylactic peritoneal dialysis catheter does not decrease time to achieve a negative fluid balance after the Norwood procedure: a randomized controlled trial. J Thorac Cardiovasc Surg. 2015;149(1):222–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Sasser WC, Dabal RJ, Askenazi DJ, Borasino S, Moellinger AB, Kirklin JK, et al. Prophylactic peritoneal dialysis following cardiopulmonary bypass in children is associated with decreased inflammation and improved clinical outcomes. Congenit Heart Dis. 2014;9(2):106–15.CrossRefPubMedGoogle Scholar
  58. 58.
    Alkan T, Akçevin A, Türkoglu H, Paker T, Sasmazel A, Bayer V, et al. Postoperative prophylactic peritoneal dialysis in neonates and infants after complex congenital cardiac surgery. ASAIO J. 2006;52(6):693–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Kwiatkowski DM, Menon S, Krawczeski CD, Goldstein SL, Morales DL, Phillips A, et al. Improved outcomes with peritoneal dialysis catheter placement after cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg. 2015;149(1):230–6.CrossRefPubMedGoogle Scholar
  60. 60.
    Bojan M, Gioanni S, Vouhé PR, Journois D, Pouard P. Early initiation of peritoneal dialysis in neonates and infants with acute kidney injury following cardiac surgery is associated with a significant decrease in mortality. Kidney Int. 2012;82(4):474–81.CrossRefPubMedGoogle Scholar
  61. 61.
    Murala JSK, Singappuli K, Provenzano SC, Nunn G. Techniques of inserting peritoneal dialysis catheters in neonates and infants undergoing open heart surgery. J Thorac Cardiovasc Surg. 2010;139(2):503–5.CrossRefPubMedGoogle Scholar
  62. 62.
    Sanchez-de-Toledo J, Perez-Ortiz A, Gil L, Baust T, Linés-Palazón M, Perez-Hoyos S, et al. Early initiation of renal replacement therapy in pediatric heart surgery is associated with lower mortality. Pediatr Cardiol. 2016;37(4):623–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Sorof JM, Stromberg D, Brewer ED, Feltes TF, Fraser CD Jr. Early initiation of peritoneal dialysis after surgical repair of congenital heart disease. Pediatr Nephrol. 1999;13(8):641–5.CrossRefPubMedGoogle Scholar
  64. 64.
    Saini A, Delius RE, Seshadri S, Walters H III, Mastropietro CW. Passive peritoneal drainage improves fluid balance after surgery for congenital heart disease. Eur J Cardiothorac Surg. 2012;41(2):256–60.CrossRefPubMedGoogle Scholar
  65. 65.
    Dittrich S, Dähnert I, Vogel M, Stiller B, Haas NA, Alexi-Meskishvili V, et al. Peritoneal dialysis after infant open heart surgery: observations in 27 patients. Ann Thorac Surg. 1999;68(1):160–3.CrossRefPubMedGoogle Scholar
  66. 66.
    Weaver DJ, Somers MJ, Martz K, Mitsnefes MM. Clinical outcomes and survival in pediatric patients initiating chronic dialysis: a report of the NAPRTCS registry. Pediatr Nephrol. 2017;32(12):2319–30.CrossRefPubMedGoogle Scholar
  67. 67.
    Zaritsky J, Warady BA. Peritoneal dialysis in infants and young children. Semin Nephrol. 2011;31(2):213–24. ElsevierCrossRefPubMedGoogle Scholar
  68. 68.
    Fleming GM, Sahay R, Zappitelli M, King E, Askenazi DJ, Bridges BC, et al. The incidence of acute kidney injury and its effect on neonatal and pediatric extracorporeal membrane oxygenation outcomes: a multicenter report from the kidney intervention during extracorporeal membrane oxygenation study group. Pediatr Crit Care Med. 2016;17(12):1157–69.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Zwiers AJ, de Wildt SN, Hop WC, Dorresteijn EM, Gischler SJ, Tibboel D, et al. Acute kidney injury is a frequent complication in critically ill neonates receiving extracorporeal membrane oxygenation: a 14-year cohort study. Crit Care. 2013;17(4):R151.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Gadepalli SK, Selewski DT, Drongowski RA, Mychaliska GB. Acute kidney injury in congenital diaphragmatic hernia requiring extracorporeal life support: an insidious problem. J Pediatr Surg. 2011;46(4):630–5.CrossRefPubMedGoogle Scholar
  71. 71.
    Smith AH, Hardison DC, Worden CR, Fleming GM, Taylor MB. Acute renal failure during extracorporeal support in the pediatric cardiac patient. ASAIO J. 2009;55(4):412–6.CrossRefPubMedGoogle Scholar
  72. 72.
    Selewski DT, Askenazi DJ, Bridges BC, Cooper DS, Fleming GM, Paden ML, et al. The impact of fluid overload on outcomes in children treated with extracorporeal membrane oxygenation: a multicenter retrospective cohort study. Pediatr Crit Care Med. 2017;18(12):1126–35.CrossRefPubMedGoogle Scholar
  73. 73.
    Fleming GM, Askenazi DJ, Bridges BC, Cooper DS, Paden ML, Selewski DT, et al. A multicenter international survey of renal supportive therapy during ECMO: the kidney intervention during extracorporeal membrane oxygenation (KIDMO) group. ASAIO J. 2012;58(4):407–14.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Hoover NG, Heard M, Reid C, Wagoner S, Rogers K, Foland J, et al. Enhanced fluid management with continuous venovenous hemofiltration in pediatric respiratory failure patients receiving extracorporeal membrane oxygenation support. Intensive Care Med. 2008;34(12):2241–7.CrossRefPubMedGoogle Scholar
  75. 75.
    Lou S, MacLaren G, Paul E, Best D, Delzoppo C, Butt W. Hemofiltration is not associated with increased mortality in children receiving extracorporeal membrane oxygenation. Pediatr Crit Care Med. 2015;16(2):161–6.CrossRefPubMedGoogle Scholar
  76. 76.
    Blijdorp K, Cransberg K, Wildschut ED, Gischler SJ, Jan Houmes R, Wolff ED, et al. Haemofiltration in newborns treated with extracorporeal membrane oxygenation: a case-comparison study. Crit Care. 2009;13(2):R48.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Murphy HJ, Cahill JB, Twombley KE, Kiger JR. Early continuous renal replacement therapy improves nutrition delivery in neonates during extracorporeal life support. J Ren Nutr. 2018;28(1):64–70.CrossRefPubMedGoogle Scholar
  78. 78.
    Murphy HJ, Cahill JB, Twombley KE, Annibale DJ, Kiger JR. Implementing a practice change: early initiation of continuous renal replacement therapy during neonatal extracorporeal life support standardizes care and improves short-term outcomes. J Artif Organs. 2018;21(1):76–85.CrossRefPubMedGoogle Scholar
  79. 79.
    Wolf MJ, Chanani NK, Heard ML, Kanter KR, Mahle WT. Early renal replacement therapy during pediatric cardiac extracorporeal support increases mortality. Ann Thorac Surg. 2013;96(3):917–22.CrossRefPubMedGoogle Scholar
  80. 80.
    Paden ML, Warshaw BL, Heard ML, Fortenberry JD. Recovery of renal function and survival after continuous renal replacement therapy during extracorporeal membrane oxygenation. Pediatr Crit Care Med. 2011;12(2):153–8.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Li S, Krawczeski CD, Zappitelli M, Devarajan P, Thiessen-Philbrook H, Coca SG, et al. Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery–a prospective multicenter study. Crit Care Med. 2011;39(6):1493.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Haase M, Bellomo R, Story D, Letis A, Klemz K, Matalanis G, et al. Effect of mean arterial pressure, haemoglobin and blood transfusion during cardiopulmonary bypass on post-operative acute kidney injury. Nephrol Dial Transplant. 2011;27(1):153–60.CrossRefPubMedGoogle Scholar
  83. 83.
    Wang W, Huang HM, Zhu DM, Chen H, Su ZK, Ding WX. Modified ultrafiltration in paediatric cardiopulmonary bypass. Perfusion. 1998;13(5):304–10.CrossRefPubMedGoogle Scholar
  84. 84.
    Portela F, Español R, Quintáns J, Pensado A, Vazquez A, Sánchez A, et al. Combined perioperative ultrafiltration in pediatric cardiac surgery. The preliminary results. Rev Esp Cardiol. 1999;52(12):1075–82.CrossRefPubMedGoogle Scholar
  85. 85.
    Zhou G, Feng Z, Xiong H, Duan W, Jin Z. A combined ultrafiltration strategy during pediatric cardiac surgery: a prospective, randomized, controlled study with clinical outcomes. J Cardiothorac Vasc Anesth. 2013;27(5):897–902.CrossRefPubMedGoogle Scholar
  86. 86.
    Koutlas TC, Gaynor JW, Nicolson SC, Steven JM, Wernovsky G, Spray TL. Modified ultrafiltration reduces postoperative morbidity after cavopulmonary connection. Ann Thorac Surg. 1997;64(1):37–43.CrossRefPubMedGoogle Scholar
  87. 87.
    Naik SK, Knight A, Elliott M. A prospective randomized study of a modified technique of ultrafiltration during pediatric open-heart surgery. Circulation. 1991;84(5 Suppl):III422–31.PubMedGoogle Scholar
  88. 88.
    Keenan HT, Thiagarajan R, Stephens KE, Williams G, Ramamoorthy C, Lupinetti FM. Pulmonary function after modified venovenous ultrafiltration in infants: a prospective, randomized trial. J Thorac Cardiovasc Surg. 2000;119(3):501–7.CrossRefPubMedGoogle Scholar
  89. 89.
    Liu J, Long C, Feng Z, Ji B, Li C. Comparative study of pulmonary function after conventional ultrafiltration or modified ultrafiltration during cardiac surgery of infants. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2002;24(4):364–6.PubMedGoogle Scholar
  90. 90.
    Tweddell JS, Hoffman GM, Mussatto KA, Fedderly RT, Berger S, Jaquiss RD, et al. Improved survival of patients undergoing palliation of hypoplastic left heart syndrome: lessons learned from 115 consecutive patients. Circulation. 2002;106(12 Suppl 1):I82–9.PubMedGoogle Scholar
  91. 91.
    Pearl JM, Manning PB, McNamara JL, Saucier MM, Thomas DW. Effect of modified ultrafiltration on plasma thromboxane B2, leukotriene B4, and endothelin-1 in infants undergoing cardiopulmonary bypass. Ann Thorac Surg. 1999;68(4):1369–75.CrossRefPubMedGoogle Scholar
  92. 92.
    McRobb CM, Ing RJ, Lawson DS, Jaggers J, Twite M. Retrospective analysis of eliminating modified ultrafiltration after pediatric cardiopulmonary bypass. Perfusion. 2017;32(2):97–109.CrossRefPubMedGoogle Scholar
  93. 93.
    Chew MS, Brix-Christensen V, Ravn HB, Brandslund I, Ditlevsen E, Pedersen J, et al. Effect of modified ultrafiltration on the inflammatory response in paediatric open-heart surgery: a prospective, randomized study. Perfusion. 2002;17(5):327–33.CrossRefPubMedGoogle Scholar
  94. 94.
    Kuratani N, Bunsangjaroen P, Srimueang T, Masaki E, Suzuki T, Katogi T. Modified versus conventional ultrafiltration in pediatric cardiac surgery: a meta-analysis of randomized controlled trials comparing clinical outcome parameters. J Thorac Cardiovasc Surg. 2011;142(4):861–7.CrossRefPubMedGoogle Scholar
  95. 95.
    Mahmoud A-BS, Burhani MS, Hannef AA, Jamjoom AA, Al-Githmi IS, Baslaim GM. Effect of modified ultrafiltration on pulmonary function after cardiopulmonary bypass. Chest J. 2005;128(5):3447–53.CrossRefGoogle Scholar
  96. 96.
    Alobaidi R, Morgan C, Basu RK, Stenson E, Featherstone R, Majumdar SR, et al. Association between fluid balance and outcomes in critically ill children: a systematic review and meta-analysis. JAMA Pediatr. 2018;172(3):257–68.CrossRefPubMedGoogle Scholar
  97. 97.
    Murray PT, Mehta RL, Shaw A, Ronco C, Endre Z, Kellum JA, et al. Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th acute Dialysis quality initiative consensus conference. Kidney Int. 2014;85(3):513–21.CrossRefPubMedGoogle Scholar
  98. 98.
    Askenazi D, Ingram D, White S, Cramer M, Borasino S, Coghill C, et al. Smaller circuits for smaller patients: improving renal support therapy with Aquadex™. Pediatr Nephrol. 2016;31(5):853–60.CrossRefPubMedGoogle Scholar
  99. 99.
    Ronco C, Garzotto F, Brendolan A, Zanella M, Bellettato M, Vedovato S, et al. Continuous renal replacement therapy in neonates and small infants: development and first-in-human use of a miniaturised machine (CARPEDIEM). Lancet. 2014;383(9931):1807–13.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • David M. Kwiatkowski
    • 1
  • Catherine D. Krawczeski
    • 1
    Email author
  • David T. Selewski
    • 2
  1. 1.Division of Pediatric Cardiology, Department of PediatricsStanford University School of MedicinePalo AltoUSA
  2. 2.Division of Pediatric Nephrology, Department of PediatricsUniversity of Michigan School of MedicineAnn ArborUSA

Personalised recommendations