Bioremediation of Xenobiotic Organic Compounds in Greywater by Fungi Isolated from Peatland, a Future Direction

  • Efaq Ali Noman
  • Adel Ali Saeed Al-Gheethi
  • Balkis A. Talip
  • Radin Maya Saphira Radin Mohamed
  • H. Nagao
  • Amir Hashim Mohd Kassim
  • Junita Abdul Rahman
Part of the Water Science and Technology Library book series (WSTL, volume 87)


The conventional wastewater treatment processes aim to remove pathogens and priority pollutants in terms of chemical and physical characteristics such as chemical oxygen demand (COD), biological oxygen demand (BOD) and total suspended solids (TSS). Some of the technologies are used for reduction of nutrients such as the phycoremediation process which has high efficiency for the reduction of total nitrogen and phosphorus from the wastewater. Unfortunately, these techniques have no contribution to the removal of XOCs. The greywater with XOCs should be subjected to an advanced treatment process to remove xenobiotic organic compounds (XOCs) before the final disposal into the environment. The current treatment by the oxidation processes is insufficient and expensive as well as have many of toxic by-products. This gap offered the investigators greater opportunities to explore effective and eco-friendly alternative technologies for XOCs degradation in greywater. Moreover, many of the fungi from the peat soil especially that belong to white rot fungi have higher enzymatic activities and produce a lot of oxidative enzymes such as laccase, lignin and manganese peroxidases. These enzymes are the main factor in the bioremediation process of the pollutants in the contaminated environment such as wastewater. Among different types of the oxidative enzymes from the fungi, the peroxidase and laccase have high importance in the biodegradation of XOCs. The current chapter discusses the potential of fungi as an alternative green technology for the degradation of XOCs from the greywater.


XOCs Fungi Laccase Peroxidase Mechanism Bio-carrier 



The authors wish to thank the Ministry of Higher Education (MOHE) for supporting this research under FRGS vot 1574 and also the Research Management Centre (RMC) UTHM for providing grant IGSP U682 for this research.


  1. Abadulla E, Tzanov T, Costa S, Robra KH, Paulo AC, Gubitz GM (2000) Decorization and deyoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol 66(8):3357–3362CrossRefGoogle Scholar
  2. AbdulKarim MI, Daud NA, Alam MDZ (2011). Treatment of palm oil mill effluent using microorganisms. In: Alam MDZ, Jameel AT, Amid A (eds) Current research and development in biotechnology engineering at International Islamic University Malaysia (IIUM) Vol. III. IIUM Press, Kuala Lumpur, pp 269–275. ISBN 9789674181444Google Scholar
  3. Ainsworth GC (1971) The fungi: an advanced treatise Vol. 4B: taxonomic review with keys, Basidiomycetes and lower fungi. Academic PressGoogle Scholar
  4. Ainsworth GC, Sparrow FK, Sussman AS (1973) The Fungi, Vol. IVA. A: A taxonomic review with keys: ascomycetes and fungi imperfecti. Academic Press, New York, NYGoogle Scholar
  5. Al-Ahmad A, Daschner FD, Kümmerer K (1999) Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria. Arc Environ Cont Toxicol 37(2):158–163CrossRefGoogle Scholar
  6. Alexopoulos CJ (1962) Introductory mycology. Introductory mycologyGoogle Scholar
  7. Alexopoulos CJ, Mims CW (1979) Introducción a la Micología (No. QK603. A4318 3A ED) EudebaGoogle Scholar
  8. Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory mycology, 4th edn. Wiley, New York, USA, 868 p. ISBN: 978-0-471-52229-4Google Scholar
  9. Al-Gheethi AAS (2015) Recycling of sewage sludge as production medium for cellulase by a Bacillus megaterium strain. Int J Rec Organic Waste Agr 4(2):105–119CrossRefGoogle Scholar
  10. Anastasi A, Prigione V, Cas L, Casieri L, Varese GC (2009) Decolourisation of model and industrial dyes by mitosporic fungi in different culture conditions. World J Microbiol Biotechnol 25:1363–1374CrossRefGoogle Scholar
  11. Archibald FS, Bourbonnais R, Jurasek L, Paice MG, Reid ID (1997) Kraft pulp bleaching and delignification by Trametes versicolor. J Biotechnol 53(2–3):215–236CrossRefGoogle Scholar
  12. Aust SD (1990) Degradation of environmental pollutants by Phanerochaete chyrosporium. Microb Ecol 20:197–209CrossRefGoogle Scholar
  13. Bako SP, Chukwunonso D, Adamu AK (2008) Bioremediation of refinery effluents by strains of Pseudomonas aeruginosa and Penicillium janthinellum. Appl Ecol Environ Res 6(3):49–60CrossRefGoogle Scholar
  14. Bhadury P, Bridge PD, Austen MC, Bilton DT, Smerdon GR (2009). Detection of fungal 18S rRNA sequences in conjunction with marine nematode 18S rRNA amplicons. Aquat Biol, 5:149–155CrossRefGoogle Scholar
  15. Bhole BD, Ganguly B, Madhuram A, Deshpande D, Joshi J (2004) Biosorption of methyl violet, basic fuchsin and their mixture using dead fungal biomass. Curr Sci 86(12):1641–1645Google Scholar
  16. Bourbonnais R, Paice MG, Reid ID, Lanthier P, Yaguchi M (1995) Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerisation. Appl Environ Microbiol 61(5):1876–1880Google Scholar
  17. Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. BioEssays 28(8):799–808CrossRefGoogle Scholar
  18. Cabana H, Jiwan JLH, Rozenberg R, Elisashvili V, Penninckx M, Agathos SN, Jones JP (2007) Elimination of endocrine disrupting chemicals nonylphenol and bisphenol A and personal care product ingredient triclosan using enzyme preparation from the white rot fungus Coriolopsis polyzona. Chemosphere 67(4):770–778CrossRefGoogle Scholar
  19. Cajthaml T, Křesinová Z, Svobodová K, Möder M (2009) Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi. Chemosphere 75(6):745–750CrossRefGoogle Scholar
  20. Cañas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28:694–705CrossRefGoogle Scholar
  21. Choi Y-S, Kim G-H, Lim YW, Kim SH, Imamura Y, Yoshimura T, Kim J-J (2009) Characterization of a strong CCA-treated wood degrader, unknown Crustoderma species. Antonie Van Leeuwenhoek 95(3):285–293CrossRefGoogle Scholar
  22. Cole GT, Samson RA (1979) Patterns of development in conidial fungi. Pittman, London, United KingdomGoogle Scholar
  23. Copeland HF (1956) The classification of lower organisms. Pacific Books, Palo AltoGoogle Scholar
  24. Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chyrosporium. Appl Environ Microbiol 56:1114–1118Google Scholar
  25. Cunha KC, Sutton DA, Fothergill AW, Gené J, Cano J, Madrid H, Hoog S, Crous PW, Guarro J (2013) In vitro antifungal susceptibility and molecular identity of 99 clinical isolates of the opportunistic fungal genus Curvularia. Diag Microbiol Inf Dis 76(2013):168–174CrossRefGoogle Scholar
  26. Dantán-González E, Vite-Vallejo O, Martínez-Anaya C, Méndez-Sánchez M, González MC, Palomares LA, Folch-Mallol J (2008) Production of two novel laccase isoforms by a thermotolerant strain of Pycnoporus sanguineus isolated from an oil-polluted tropical habitat. Int Microbiol 11(3):163–169Google Scholar
  27. Deacon J (2005) Fungal Biology, 4th edn. Blackwell Publishing Ltd., Malden. Scholar
  28. Diba K, Kordbacheh P, Mirhendi SH, Rezaie S, Mahmoudi M (2007) Identification of Aspergillus species using morphological characteristics. Pak J Med Sci 23(6):867–872Google Scholar
  29. Eaton D, Chang H, Kirk TK (1980) Fungal decolorization of kraft bleach plant effluent. Tappi J 63:103–106Google Scholar
  30. Efaq AN, Rahman NNNA, Nagao H, Al-Gheethi AA, Kadir MA (2017) Inactivation of Aspergillus spores in clinical wastes by supercritical carbon dioxide. Arab J Sci Eng 42(1):39–51CrossRefGoogle Scholar
  31. Elisashvili V, Kachlishvili E, Tsiklauri N, Metreveli E, Khardziani T, Agathos SN (2009) Lignocellulose-degrading enzyme production by white-rot Basidiomycetes isolated from the forests of Georgia. World J Microbiol Biotechnol 25(2):331–339CrossRefGoogle Scholar
  32. Ellis MB (1971) Dematiaceous hyphomycetes. Commonwealth Mycological Institute, KewGoogle Scholar
  33. Emine S, Kambol, R, Zainol N (2010) Morphological characterization of soil Penicillium sp. Strains—Potential producers of statin. In: Biotechnology symposium IV, 01–03 Dec 2010, Universiti Malaysia Sabah, Sabah, MalaysiaGoogle Scholar
  34. Enayatizamir N, Tabandeh F, Rodriguez-Couto S, Yakhchali B, Alikhani HA, Mohammadi L (2011) Biodegradation pathway and detoxification of the diazo dye Reactive Black 5 by Phanerochaete chrysosporium. Biores Technol 102(22):10359–10362CrossRefGoogle Scholar
  35. Fogarty RV, Tobin JM (1996) Fungal melanins and their interactions with metals. Enz Microb Technol 19(4):311–317CrossRefGoogle Scholar
  36. Gao L, Sun MH, Liu XZ, Che YS (2007) Effects of carbon concentration and carbon to nitrogen ratio on the growth and sporulation of several biocontrol fungi. Mycol Res 111(1):87–92CrossRefGoogle Scholar
  37. Glaser PH, Chanton JP, Morin P, Rosenberry DO, Siegel DI, Ruud O, Reeve AS (2004) Surface deformations as indicators of deep ebullition fluxes in a large northern peatland. Global Biogeochem Cycles 18(1)CrossRefGoogle Scholar
  38. Grčić I, Vrsaljko D, Katančić Z, Papić S (2015) Purification of household greywater loaded with hair colorants by solar photocatalysis using TiO2-coated textile fibers coupled flocculation with chitosan. J Water Process Eng 5:15–27CrossRefGoogle Scholar
  39. Guarro J, Gene J, Stchigel AM (1999) Developments in fungal taxonomy. Clin Microbiol Rev 12(3):454–500Google Scholar
  40. Gyaurgieva OH, Bogomolova TS, Gorshkova GI (1996) Meningitis caused by Rhodotorula rubra in an HIV infected patient. J Med Vet Mycol 34:357–359CrossRefGoogle Scholar
  41. Hakala TK, Hildén K, Maijala P, Olsson C, Hatakka A (2006) Differential regulation of manganese peroxidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus. Appl Microbiol Biotechnol 73:839–849CrossRefGoogle Scholar
  42. Hardison MT, Brown MD, Snelgrove RJ, Blalock JE, Jackson P (2012) Cigarette smoke enhances chemotaxis via acetylation of proline-glycine-proline. Front Biosci (Elite edition) 4:2402–2409Google Scholar
  43. Hendriks L, De Baere R, Van De Peer Y, Neefs J, Goris A, De Wachter R (1991) The evolutionary position of the rhodophyte Porphyra umbilicalis and the basidiomycete Leucosporidium scottii among other eukaryotes as deduced from complete sequences of small ribosomal subunit RNA. J. Mol. Evol 32:167–l77CrossRefGoogle Scholar
  44. Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87:871–897CrossRefGoogle Scholar
  45. Hollaway Stephen L, Faw Gary M, Sizemore Ronald K (1980) The bacterial community composition of an active oil field in the Northwestern Gulf of Mexico. Marine Poll Bull 11(6):153–156CrossRefGoogle Scholar
  46. Huat BK (2004) Organic and peat soils engineering. University Putra Malaysia Press, SerdangGoogle Scholar
  47. Jahangeer S, Khan N, Jahangeer S, Sohail M, Shahzad S, Ahmad A, Khan SA (2005) Screening and characterization of fungal cellulases isolated from the native environmental source. Pakistan J Bot 37(3):739Google Scholar
  48. Jensen AB, Aronstein K, Flores JM, Vojvodic S, Palacio MA, Spivak M (2013) Standard methods for fungal brood disease research. J Apic Res 52(1):1–20CrossRefGoogle Scholar
  49. Jin B, van Leeuwen J, Patel B (1999) Production of fungal protein and glucoamylase by Rhizopus oligosporus from starch processing wastewater. Process Biochem 34:59–65CrossRefGoogle Scholar
  50. Joosten H, Clarke D (2002). Wise use of mires and peatlands—background and principles including a framework for decision-making. International Mire Conservation Group/International Peat Society, 304 ppGoogle Scholar
  51. Kalantari B, Prasad A (2014) A study of the effect of various curing techniques on the strength of stabilized peat. Transp Geotech 1(3):119–128CrossRefGoogle Scholar
  52. Kazemian S, Prasad A, Huat BB, Barghchi M (2011) A state of art review of peat: geotechnical engineering perspective. Int J Phy Sci 6(8):1974–1981Google Scholar
  53. Kim YJ, Nicell JA (2006) Laccase-catalysed oxidation of aqueous triclosan. J Chem Technol Biotechnol 81(8):1344–1352CrossRefGoogle Scholar
  54. Kirk TK, Farrell RL (1987) Enzymatic combustion: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505CrossRefGoogle Scholar
  55. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CABI, Wallingford, UKGoogle Scholar
  56. Kumara KLW, Rawal RD (2008) Influence of carbon, nitrogen, temperature and pH on the growth and sporulation of some Indian isolates of Colletotrichum gloeosporioides causing anthracnose disease of papaya (Carrica papaya L). Trop Agric Res Ext 11:7–12CrossRefGoogle Scholar
  57. Lankinen VP, Inkeroinen MM, Pellien J, Hatakka AI (1990) The onset of lignin modifying enzyme, decrease of AOX and colour removal by white rot fungi: growth on bleach plant effluent. Water Sci Technol 24:189–198CrossRefGoogle Scholar
  58. Lee H, Jang Y, Choi YS, Kim MJ, Lee J, Lee H, Kim JJ (2014) Biotechnological procedures to select white rot fungi for the degradation of PAHs. J Microbiol Methods 97:56–62CrossRefGoogle Scholar
  59. Leslie JF, Summerell BA (2006) The Fusarium Laboratory manual. Blackwell Publishing Ltd., IowaGoogle Scholar
  60. Livernoche D, Jurasek L, Desrochers M, Dorica J (1983) Removal of colour from kraft mill wastewater with cultures of white rot fungi ad with immobilized mycelium of Coriolus versicolor. Biotechnol Bioeng 25:2055–2065CrossRefGoogle Scholar
  61. Marco-Urrea E, Reddy CA (2012) Degradation of chloro-organic pollutants by white rot fungi. In: Microbial degradation of xenobiotics. Springer, Berlin, pp 31–66Google Scholar
  62. Margot J, Bennati-Granier C, Maillard J, Blánquez P, Barry DA, Holliger C (2013) Bacterial versus fungal laccase: potential for micropollutant degradation. AMB Express 3(1):63CrossRefGoogle Scholar
  63. Martirani L, Giardina P, Marzullo L, Sannia G (1996) Reduction of phenol content and toxicity in olive oil mill wastewater with the linolytic fungus Pleurotus ostreatus. Water Res 30:1914–1918CrossRefGoogle Scholar
  64. Mesri G, Ajlouni M (2007) Engineering Properties of fibrous peats. J Geotech Geoenviron Eng 133(7):850–866CrossRefGoogle Scholar
  65. Michel FC, Dass SB, Gulkcand EA, Reddy CA (1991) Role of manganese peroxidase and lignin peroxidase of Phanerochaete chrysosporium in the decolorization of kraft bleach plant effluent. Appl Environ Microbiol 57:2368–2375Google Scholar
  66. Miranda RC, Gomes EB, Pereira NJ, Marin-Morales MA, Machado KM, Gusmao NB (2013) “Biotreatment of textile effluent in static bioreactor by Curvularia lunata URM 6179 and Phanerochaete chrysosporium URM 6181. Biores Technol 142:361–367CrossRefGoogle Scholar
  67. Mohorcic M, Friedrich J, Pavko A (2004) Decoloration of the diazo dye reactive black 5 by immobilized Bjerkandera adusta in a stirred tank bioreactor. Acta Chim Slov 51:619–628Google Scholar
  68. Moreira PR, Duez C, Dehareng D, Antunes A, Almeida-Vara E, Frère JM, Malcata FX, Duarte JC (2005) Molecular characterization of a versatile peroxidase from a Bjerkandera strain. J Biotechnol 118:339–352CrossRefGoogle Scholar
  69. Nadeau RR, Singhvi J, Lin I, Syslo J (1993) Monitoring bioremediation for bioremediation efficiency: the marrow marsh experience, proceeding of the 1993 oil spill conference. Am petrol inst, Washington, DC, pp 477–485Google Scholar
  70. Nakada M, Tanaka C, Tsunewaki K, Tsuda M (1994) RFLP analysis for species separation in the genera Bipolaris and Curvularia. Mycoscience 1994(35):271–278CrossRefGoogle Scholar
  71. Niku-Paavola M-L, Viikari L (2000) Enzymatic oxidation of alkenes. J Mol Catal B 10(4):435–444CrossRefGoogle Scholar
  72. Nolan C, Margoliash E (1968) Comparative aspects of primary structures of proteins. Ann Rev Biochem 37(1):727–791CrossRefGoogle Scholar
  73. Noman EA, Al-Gheethi AA, Rahman NNNA, Nagao H, Kadir MA (2016) Assessment of relevant fungal species in clinical solid wastes. Environ Sci Poll Res 23(19):19806–19824CrossRefGoogle Scholar
  74. Oberdörster E, Cheek AO (2001) Gender benders at the beach: endocrine disruption in marine and estuarine organisms. Environ Toxicol Chem 20(1):23–36CrossRefGoogle Scholar
  75. Ojumu TV, Bello OO, Sonibare JA, Solomon BO (2005) Evaluation of microbial systems for bioremediation of petroleum refinery effluents in Nigeria. Afr J Biotechnol 4(1):31–35Google Scholar
  76. Okonko IO, Shittu OB (2007) Bioremediation of wastewater and municipal water treatment using latex from Caloptropis procera (Sodom apple). Electr J Environ, Agr Food Chem 6(3):1890–1904Google Scholar
  77. Pinholt Y, Struwe S, Kjøller A (1979) Microbial changes during oil decomposition in soil. Ecography 2(3):195–200CrossRefGoogle Scholar
  78. Pointing SB, Vrijmoed LLP (2000) Decolorization of azo and triphenylmethane dyes by Pycnoporus sanguineus producing laccase as the sole phenoloxidase. World J Microbiol Biotechnol 16:317–318CrossRefGoogle Scholar
  79. Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV (2004) Catalytic properties of yellow laccase from Pleurotus ostreatus D1. J Mol Catal B 30(1):19–24CrossRefGoogle Scholar
  80. Promputtha I, Jeewon R, Lumyong S, McKenzie EHC, Hyde KD (2005) Ribosomal DNA fingerprinting in the identification of non sporulating endophytes from Magnolia liliifera (Magnoliaceae). Fungal Divers 20:167–186Google Scholar
  81. Ramírez-Cavazos LI, Junghanns C, Ornelas-Soto N, Cárdenas-Chávez DL, Hernández-Luna C, Demarche P, Parra R (2014) Purification and characterization of two thermostable laccases from Pycnoporus sanguineus and potential role in degradation of endocrine disrupting chemicals. J Mol Catal B Enzym 108:32–42CrossRefGoogle Scholar
  82. Reddy CA (1995) The potential for white-rot fungi in the treatment of pollutants. Curr Opin Biotechnol 6:320–328CrossRefGoogle Scholar
  83. Robert AS, János V, Christian FJ (eds) (2011) Taxonomic studies on the genus Aspergillus-DTU Orbit. Studies in Mycology. Publication Research—peer-review. Book—Annual report year: 2011. CBS-KNAW Fungal Biodiversity CentreGoogle Scholar
  84. Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez AT (2009) Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 60:441–452CrossRefGoogle Scholar
  85. Saito T, Kato K, Yokogawa Y, Nishida M, Yamashita N (2004) Detoxification of bisphenol A and nonylphenol by purified extracellular laccase from a fungus isolated from soil. J Biosci Bioeng 98(2004):64–66CrossRefGoogle Scholar
  86. Sandhu GS, Kline BC, Stockman L, Roberts GD (1995) Molecular probes for diagnosis of fungal infections. J Clin Microbiol 33:2913–2919Google Scholar
  87. Sayadi S, Ellouz R (1993) Screening of white rot fungi for the treatment of olive mill waste waters. J Chem Tech Biotechnol 57:141–146CrossRefGoogle Scholar
  88. Sayadi S, Ellouz R (1995) Roles of lignin peroxidase and manganese peroxidase from Phanerochaete chrysosporium in the decolorization of olive mill wastewaters. Appl Environ Microbiol 61:1098–1103Google Scholar
  89. Scherer M, Fischer R (1998) Purification and characterization of laccase II of Aspergillus nidulans. Arch Microbiol 170(2):78–84CrossRefGoogle Scholar
  90. Schwarz P, Lortholary O, Dromer F, Dannaoui E (2007) Carbon Assimilation Profiles as a Tool for Identification of Zygomycetes. J Clin Microbiol 45(5):1433–1439CrossRefGoogle Scholar
  91. Silva DM, Batista LR, Rezende EF, Fungaro MHP, Sartori D, Alves E (2011) Identification of fungi of the genus Aspergillus section Nigri using polyphasic taxonomy. Braz J Microbiol 42:761–773CrossRefGoogle Scholar
  92. Sivanesan A (1987) Graminicolous species of Bipolaris, Curvularia, Drechslera, Exserohilum, and their teleomorphs. Mycol Pap 1987(158):1–261Google Scholar
  93. Songulashvili G, Elisashvili V, Wasser SP, Nevo E, Hadar Y (2007) Basidiomycetes laccase and manganese peroxidase activity in submerged fermentation of food industry wastes. Enzyme Microb Technol 41:57e61CrossRefGoogle Scholar
  94. Songulashvili G, Jimenéz-Tobón GA, Jaspers C, Penninckx MJ (2012) Immobilized laccase of Cerrena unicolor for elimination of endocrine disruptor micropollutants. Fungal biology 116(8):883–889CrossRefGoogle Scholar
  95. Sugiura T, Yamagishi K, Kimura T, Nishida T, Kawagishi H, Hirai H (2009) Cloning and homologous expression of novel lignin peroxidase genes in the white-rot fungus Phanerochaete sordida YK-624. Biosci Biotechnol Biochem 73:1793–1798CrossRefGoogle Scholar
  96. Thormann MN (2006) Diversity and function of fungi in peatlands: a carbon cycling perspective. Canadian J Soil Sci 86:281–293CrossRefGoogle Scholar
  97. Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19e26CrossRefGoogle Scholar
  98. Timnick MB, Lilly VG, Barnett HL (1951) The effect of nutrition on the sporulation of Melanconium fuligineum in culture. Mycologia 43(6):625–634CrossRefGoogle Scholar
  99. Torres E, Bustos-Jaimes I, Le Borgne S (2003) Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl Catal B 46(1):1–15CrossRefGoogle Scholar
  100. Torres-Duarte C, Viana MT, Vazquez-Duhalt R (2012) Laccase-mediated transformations of endocrine disrupting chemicals abolish binding affinities to estrogen receptors and their estrogenic activity in zebrafish. Appl Biochem Biotechnol, 1–13Google Scholar
  101. Tran NH, Urase T, Kusakabe O (2010) Biodegradation characteristics of pharmaceutical substances by whole fungal culture Trametes versicolor and its laccase. J Water Environ Technol 8(2):125–140CrossRefGoogle Scholar
  102. Veloo R, Paramananthan S, van Ranst E (2014) Classification of tropical lowland peats revisited: The case of Sarawak. CATENA 118:179–185CrossRefGoogle Scholar
  103. Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73(7):1163–1172CrossRefGoogle Scholar
  104. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246CrossRefGoogle Scholar
  105. Viswanath B, Rajesh B, Janardhan A, Kumar AP, Narasimha G (2014) Fungal laccases and their applications in bioremediation. Enzyme Res, 2014Google Scholar
  106. Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187CrossRefGoogle Scholar
  107. White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR protocols. Academic Press Inc., New York, pp 315–322Google Scholar
  108. Whittaker RH (1969) New concepts of kingdoms or organisms. Evolutionary relations are better represented by new classifications than by the traditional two kingdoms. Science 163(3863):150–160CrossRefGoogle Scholar
  109. Woese C, Fox G (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74(11):5088–5090CrossRefGoogle Scholar
  110. Wu L, Luo YP, Wan JB, Li SG (2006) Use of Yarrowia lipolytica for the treatment of oil/grease wastewater. Res Environ Sci (China) 19(5):122–125Google Scholar
  111. Yamane T (1989) Enzyme technology for the lipid industry. An engineering overview. J Am Oil Chem Soc 64:1657–1662CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Efaq Ali Noman
    • 1
    • 2
  • Adel Ali Saeed Al-Gheethi
    • 3
  • Balkis A. Talip
    • 4
  • Radin Maya Saphira Radin Mohamed
    • 3
  • H. Nagao
    • 5
  • Amir Hashim Mohd Kassim
    • 3
  • Junita Abdul Rahman
    • 3
  1. 1.Faculty of Applied Sciences and Technology (FAST)Universiti Tun Hussein Onn Malaysia (UTHM)PagohMalaysia
  2. 2.Department of Applied Microbiology, Faculty Applied SciencesTaiz UniversityTaizYemen
  3. 3.Micro-Pollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil and Environmental EngineeringUniversiti Tun Hussein Onn Malaysia (UTHM)Parit Raja, Batu PahatMalaysia
  4. 4.Faculty of Applied Sciences and Technology (FAST)Universiti Tun Hussein Onn Malaysia (UTHM)Pagoh MuarMalaysia
  5. 5.School of Biological SciencesUniversiti Sains Malaysia (USM)George TownMalaysia

Personalised recommendations