Skip to main content

Xenobiotic Organic Compounds in Greywater and Environmental Health Impacts

Part of the Water Science and Technology Library book series (WSTL,volume 87)

Abstract

One of the most common organic compounds which represents real challenges in the environmental pollution treatment is the xenobiotic organic compounds (XOCs). They are complex organic compounds which have high persistence in the environment extend for several years due to their chemical structure. Meanwhile, its hazards risk lies in tier active poisons which directly affect aquatic life within a short exposure time. XOCs in the greywater are generated from utilisation of detergents and personal body care products and they have the potential to persist in nature for a long time and thus have long-term effects to the environment including toxicity and bioaccumulation in the organism’s cells. There are many literatures discussing about the types of XOCs of greywater. For instance, some types of XOCs in greywater are toxic for aquaculture. This chapter will discuss the occurrence of XOCs in the greywater, chemical structure and bioassay for the toxicity of these compounds.

Keywords

  • XOCs
  • Toxicity
  • Health risk
  • Regulations
  • Greywater

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-90269-2_5
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-90269-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2

References

  • Aarestrup FM (2000) Occurrence, selection and spread of resistance to antimicrobial agents used for growth promotion for food animals in Denmark. APMIS 108(Suppl 101):5–48

    CrossRef  Google Scholar 

  • Aarestrup FM, Bager F, Jensen NE, Madsen M, Meyling A, Wegener HC (1998) Surveillance of antimicrobial resistance in bacteria isolated from food animals to antimicrobial growth promoters and related therapeutic agents in Denmark. Apmis 106(1–6):606–622

    CAS  CrossRef  Google Scholar 

  • Adams CD, Kuzhikannil JJ (2000) Effects of UV/H2O2 preoxidation on the aerobic biodegradability of quaternary amine surfactants. Water Res 34(2):668–672

    CAS  CrossRef  Google Scholar 

  • Al-Gheethi AA, Lalung J, Efaq AN, Bala JD, Norli I (2015) Removal of heavy metals and β-lactam antibiotics from sewage treated effluent by bacteria. Clean Technol Environ Policy 17(8):2101–2123

    CAS  CrossRef  Google Scholar 

  • Al-Gheethi AA, Mohamed RMS, Efaq AN, Norli I, Amir Hashim, Ab Kadir MO (2016) Bioaugmentation process of sewage effluents for the reduction of pathogens, heavy metals and antibiotics. J Water Health 14(5):780–795

    Google Scholar 

  • Al-Gheethi AA, Norli I (2014) Biodegradation of pharmaceutical residues in sewage treated effluents by Bacillus subtilis 1556WTNC. J Environ Process 1(4):459–489

    CAS  CrossRef  Google Scholar 

  • Al-Gheethi AA, Norli I, Lalung J, Azieda T, Efaq N, Ab Kadir MO (2013) Susceptibility for antibiotics among faecal indicators and pathogenic bacteria in sewage treated effluents. Water Pract Technol 8(1): 1–6

    CrossRef  Google Scholar 

  • Andersen HR, Lundsbye M, Wedel HV, Eriksson E, Ledin A (2007) Estrogenic personal care products in a greywater reuse system. Water Sci Technol 56(12):45–49

    CAS  CrossRef  Google Scholar 

  • Baun A, Eriksson E, Ledin A, Mikkelsen PS (2006) A methodology for ranking and hazard identification of xenobiotic organic compounds in urban storm water. Sci Total Environ 370(1):29–38

    CAS  CrossRef  Google Scholar 

  • Belanger SE, Bowling JW, Lee DM, LeBlanc EM, Kerr K, McAvoy DC, Davidson DH (2002) Integration of aquatic fate and ecological responses to linear alkyl benzene sulfonate (LAS) in model stream ecosystems. Ecotoxicol Environ Saf 52(2):150–171

    CAS  CrossRef  Google Scholar 

  • Beltrán-Heredia J, Sánchez-Martín J (2009) Removal of sodium lauryl sulphate by coagulation/flocculation with Moringaoleifera seed extract. J Hazard Mater 164(2):713–719

    CrossRef  Google Scholar 

  • Bendz D, Paxeus NA, Ginn TR, Loge FJ (2005) Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden. J Hazard Mater 122:195–204

    CAS  CrossRef  Google Scholar 

  • Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA (2008) Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environ Sci Technol 43(3):597–603

    CrossRef  Google Scholar 

  • Brackmann B, Hager CD (2004) The statistical world of raw materials, fatty alcohols and surfactants. In CD proceedings 6th world surfactant congress CESIO, Berlin, Germany

    Google Scholar 

  • Braga JK, Varesche MBA (2014) Commercial laundry water characterization. Am J Anal Chem 5(1):8

    CAS  CrossRef  Google Scholar 

  • Brown KD, Kulis J, Thomson B, Chapman TH, Mawhinney DB (2006) Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci Total Environ 366:772–783

    CAS  CrossRef  Google Scholar 

  • Bubenheim DL, Wignarajah K (1997) Recycling of inorganic nutrients for hydroponic crop production following incineration of inedible biomass. Adv Space Res 20(10):2029–2035

    CAS  CrossRef  Google Scholar 

  • Choi K, Kim Y, Park J, Park CK, Kim M, Kim HS, Kim P (2008) Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River. Korea Sci Total Environ 405(1):120–128

    CAS  CrossRef  Google Scholar 

  • Cimetiere N, Soutrel I, Lemasle M, Laplanche A, Crocq A (2013) Standard addition method for the determination of pharmaceutical residues in drinking water by SPE–LC–MS/MS. Environ Technol 34(22):3031–3041

    CAS  CrossRef  Google Scholar 

  • Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, Kroiss H (2005) Removal of selected pharmaceuticals, fragrances an endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res 39:4797–4807

    CAS  CrossRef  Google Scholar 

  • Collier AC (2007) Pharmaceutical contaminants in potable water: potential concerns for pregnant women and children. Eco Health 4:164–171

    CrossRef  Google Scholar 

  • Conkle JL, White JR, Metcalfe CD (2008) Reduction of pharmaceutically active compounds by a lagoon wetland wastewater treatment system in Southeast Louisiana. Chemosphere 73:1741–1748

    CAS  CrossRef  Google Scholar 

  • Dann AB, Hontela A (2011) Triclosan: environmental exposure, toxicity and mechanisms of action. J Appl Toxicol 31(4):285–311

    CAS  CrossRef  Google Scholar 

  • Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107(6):907–938

    CAS  CrossRef  Google Scholar 

  • Deblonde T, Cossu-Leguille C, Hartemann P (2011) Emerging pollutants in wastewater: a review of the literature. Int J Hygiene Environ Health 214(6):442–448

    CAS  CrossRef  Google Scholar 

  • Deegan AM, Shaik B, Nolan K, Urell K, Oelgemöller M, Tobin J, Morrissey A (2011) Treatment options for wastewater effluents from pharmaceutical companies. Int J Environ Sci Technol 8(3):649–666

    CAS  CrossRef  Google Scholar 

  • Dorne JLCM, Walton K, Renwick AG (2005) Human variability in xenobiotic metabolism and pathway-related uncertainty factors for chemical risk assessment: a review. Food Chem Toxicol 43:203–216

    CAS  CrossRef  Google Scholar 

  • Eriksson E, Auffarth K, Eilersen AM, Henze M, Ledin A (2003) Household chemicals and personal care products as sources for xenobiotic organic compounds in grey wastewater. Water SA 29(2):135–146

    CAS  CrossRef  Google Scholar 

  • Eriksson E, Auffarth K, Henze M, Ledin A (2002) Characteristics of grey wastewater. Urb Water 4:85–104

    CAS  CrossRef  Google Scholar 

  • Eriksson E, Baun A, Henze M, Ledin A (2006) Phytotoxicity of grey wastewater evaluated by toxicity tests. Urb Water J 3(1):13–20

    CAS  CrossRef  Google Scholar 

  • Eriksson E, Baun A, Mikkelsen PS, Ledin A (2005) Chemical hazard identification and assessment tool for evaluation of stormwater priority pollutants. Water Sci Technol 51:47–55

    CAS  Google Scholar 

  • Eriksson E, Baun A, Mikkelsen PS, Ledin A (2007) Risk assessment of xenobiotics in stormwater discharged to Harrestrup Å Denmark. Desalination 215(1):187–197

    CAS  CrossRef  Google Scholar 

  • Etchepare R, van der Hoek JP (2015) Health risk assessment of organic micropollutants in greywater for potable reuse. Water Res 72:186–198

    CAS  CrossRef  Google Scholar 

  • EU (European Union) (2000) Directive 2000/60/EC of the European Parliament and the Council of 23 October 2000 establishing a framework for community action in the field of water policy. J Eur Comm 22 Dec 2000, L327/1eL327/73

    Google Scholar 

  • European Commission (2000) Proposal for a Directive of the European Parliament and of the Council on Environmental Quality Standards in the Field of Water Policy and Amending Directive 2000/60/EC, 2006. Accessed Nov 2016. Available from: http://eur-lex.europa

  • Fram MS, Belitz K (2011) Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California. Sci Total Environ 409:3409–3417

    CAS  CrossRef  Google Scholar 

  • Gao L, Shi Y, Li W, Niu H, Liu J, Cai Y (2012) Occurrence of antibiotics in eight sewage treatment plants in Beijing, China. Chemosphere 86:665–671

    CAS  CrossRef  Google Scholar 

  • Gómez MJ, Lacorte S, Fernández-Alba A, Agüera A (2007) Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast. Chemosphere 66:993–1002

    CrossRef  Google Scholar 

  • Grčić I, Vrsaljko D, Katančić Z, Papić S (2015) Purification of household greywater loaded with hair colorants by solar photocatalysis using TiO2-coated textile fibers coupled flocculation with chitosan. J Water Process Eng 5:15–27

    CrossRef  Google Scholar 

  • Grujić S, Vasiljević T, Laušević M (2009) Determination of multiple pharmaceutical classes in surface and ground waters by liquid chromatography–ion trap–tandem mass spectrometry. J Chromatogr A 1216:4989–5000

    CrossRef  Google Scholar 

  • Gulkowskaa A, Leunga HW, Soa MK, Taniyasub S, Yamashitab N, Yeunga L, Richardsona BG, Lei AP, Giesya JP, Lama KS (2008) Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China. Water Res 42:395–403

    CrossRef  Google Scholar 

  • Handa S, Mahajan R, De D (2012) Contact dermatitis to hair dye: an update. Indian J Dermatol Venereol Leprol 78(5):583–590

    CrossRef  Google Scholar 

  • Harvey PJ, Thurston CF (2001) The biochemistry of ligninolytic fungi. In British Mycological Society Symposium Series, vol 23, pp 27–51)

    Google Scholar 

  • Health Canada (HC) (2012) Guidelines for Canadian drinking water quality-summary table. Water, air and climate change bureau, healthy environments and consumer safety branch, Ottawa, Ontario

    Google Scholar 

  • Huerta-Fontela M, Galceran MT, Ventura F (2011) Occurrence and removal of pharmaceuticals and hormones through drinking water treatment. Water Res 45:1432–1442

    CAS  CrossRef  Google Scholar 

  • Jakobi G, Löhr A (1987) Detergents and textile washing: principles and practice. VCH Publishers

    Google Scholar 

  • Kim I, Tanaka H (2009) Photodegradation characteristics of PPCPs in water with UV treatment. Environ Int 35:793–802

    CAS  CrossRef  Google Scholar 

  • Kim MK, Zoh KD (2016) Occurrence and their removal of micropollutants in water environment. Environ Eng Res (in press)

    Google Scholar 

  • Kim SD, Cho J, Kim IS, Vanderford BJ, Snyder SA (2007) Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res 41:1013–1021

    CAS  CrossRef  Google Scholar 

  • Kim JW, Jang HS, Kim JG, Ishibashi H, Hirano M, Nasu K, Arizono K (2009) Occurrence of pharmaceutical and personal care products (PPCPs) in surface water from Mankyung River South Korea. J Health Sci 55(2):249–258

    CAS  CrossRef  Google Scholar 

  • Klečka GM, Staples CA, Clark KE, Van der Hoeven N, Thomas DE, Hentges SG (2009) Exposure analysis of bisphenol A in surface water systems in North America and Europe. Environ Sci Technol 43:6145–6150

    Google Scholar 

  • DA KosmaCI Lambropoulou, Albanis TA (2010) Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece. J Hazard Mater 179:804–817

    CrossRef  Google Scholar 

  • Kupper T, Plagellat C, Braendli RC, de Alencastro LF, Grandjean D, Tarradellas J (2006) Fate and removal of polycyclic musks, UV liters and biocides during wastewater treatment. Water Res 40(14):2603–2612

    CAS  CrossRef  Google Scholar 

  • Lange KR (1994) Detergents and cleaners, a handbook for formulators. SchoderDruck GmbH & Co.KG, New York, p 1994

    Google Scholar 

  • Leal HL, Temmink H, Zeeman G, Buisman CJ (2010) Comparison of three systems for biological greywater treatment. Water 2(2):155–169

    CAS  CrossRef  Google Scholar 

  • Li D, Kim M, Shim WJ, Yim UH, Oh JR, Kwon YJ (2004) Seasonal flux of nonylphenol in Han River, Korea. Chemosphere 56:1–6

    CAS  CrossRef  Google Scholar 

  • Lin AYC, Tsai YT (2009) Occurrence of pharmaceuticals in Taiwan’s surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities. Sci Total Environ 407:3793–3802

    CAS  CrossRef  Google Scholar 

  • Loos R, Locoro G, Comero S, Contini S, Schwesig D, Werres F, Balsaa P, Gans O, Weiss S, Blaha L (2010) Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res 44:4115–4126

    CAS  CrossRef  Google Scholar 

  • Lukaova J, Sustakova A (2003) Enterococci and antibiotic resistance. J Acta Vet Brno 72:315–323

    CrossRef  Google Scholar 

  • Luo Y, Guoa W, Ngo HH, Nghiemb L, Hai FI, Zhang J, Liang S, Wang XC (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474:619–641

    CrossRef  Google Scholar 

  • Lupica S (2013) Effects of textile dyes in wastewater, eHow contributor. Available online: www.ehow.com/info_8379849_effectstextile-dyes-wastewater.html (accessed 29.06.17)

  • Matamoros V, Arias CA, Nguyen LX, Salvadó V, Brix H (2012) Occurrence and behavior of emerging contaminants in surface water and a restored wetland. Chemosphere 88:1083–1089

    CAS  CrossRef  Google Scholar 

  • Morasch B, Bonvin F, Reiser H, Grandjean D, de Alencastro LF, Perazzolo C, Chèvre N, Kohn T (2010) Occurrence and fate of micropollutants in the Vidy Bay of Lake Geneva, Switzerland. Part II: Micropollutant removal between wastewater and raw drinking water. Environ Toxicol Chem 29:1658–1668

    CAS  Google Scholar 

  • Müller-Herold U, Morosini M, Schucht O (2005) Choosing chemicals for precautionary regulation: a filter series approach. Environ SciTechnol 39:683–691

    CrossRef  Google Scholar 

  • Nakada N, Tanishima T, Shinohara H, Kiri K, Takada H (2006) Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Res 40(17):3297–3303

    CAS  CrossRef  Google Scholar 

  • NJMRC(2011) National health and medical research council. Australian drinking water guidelines

    Google Scholar 

  • Nyholm N, Källqvist T (1989) Methods for growth inhibition toxicity tests with freshwater algae. Environ Toxicol Chem 8(8):689–703

    CAS  CrossRef  Google Scholar 

  • Pal A, Gin KY, Lin AY, Reinhard M (2010) Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Sci Total Environ 408:6062–6069

    CAS  CrossRef  Google Scholar 

  • Palmquist H, Hanæus J (2005) Hazardous substances in separately collected grey-and blackwater from ordinary Swedish households. Sci Total Environ 348(1):151–163

    CAS  CrossRef  Google Scholar 

  • Radix P, Léonard M, Papantoniou C, Roman G, Saouter E, Gallotti-Schmitt S, Thiébaud H, Vasseur P (2000) Comparison of four chronic toxicity tests using algae, bacteria, and invertebrates assessed with sixteen chemicals. Ecotoxicol Environ Saf 47(2):186–194

    CAS  CrossRef  Google Scholar 

  • Rahube TO, Yost CK (2010) Antibiotic resistance plasmids in wastewater treatment plants and their possible dissemination into the environment. Rev. Afr J Biotechnol 9:9183–9190

    CAS  Google Scholar 

  • Reinthaler FF, Posch J, Feierl G, Wust G, Haas D, Ruckenbauer G, Mascher F, Marth E (2003) Antibiotic resistance of E. coli in sewage and sludge. Water Res 37:1685–1690

    CAS  CrossRef  Google Scholar 

  • Schriks M, Heringa MB, Van der Kooi MM, de Voogt P, van Wezel AP (2010) Toxicological relevance of emerging contaminants for drinking water quality. Water Res 44:461–476

    CAS  CrossRef  Google Scholar 

  • Seo DC, Cho JS, Lee HJ, Heo JS (2005) Phosphorus retention capacity of filter media for estimating the longevity of constructed wetland. Water Res 39(11):2445–2457

    CAS  CrossRef  Google Scholar 

  • Simonich SL, Federle TW, Eckhoff WS, Rottiers A, Webb S, Sabaliunas D, De Wolf W (2002) Removal of fragrance materials during US and European wastewater treatment. Environ Sci Technol 36(13):2839–2847

    CAS  CrossRef  Google Scholar 

  • Soares A, Guieysse B, Jefferson B, Cartmell E, Lester JN (2008) Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int 34(7):1033–1049

    CAS  CrossRef  Google Scholar 

  • Soda S, Otsuki H, Inoue D, Tsutsui H, Sei K, Ike M (2008) Transfer of antibiotic multi-resistant plasmid RP4 from E. coli to activated sludge bacteria. J Biosci Bioeng 106:292–296

    CAS  CrossRef  Google Scholar 

  • Straub JO (2002) Concentrations of the UV lterethylhexylmethoxycinnamate in the aquatic compartment: a comparison of modelled concentrations for Swiss surface waters with empirical monitoring data. Toxicol Lett 131(1–2):29–37

    CAS  CrossRef  Google Scholar 

  • Stumm-Zollinger E, Fair GM (1965) Biodegradation of steroid hormones. Res J Water Poll C 37(11):1506–1510

    Google Scholar 

  • Togunde OP, Oakes KD, Servos MR, Pawliszyn J (2012) Determination of pharmaceutical residues in fish bile by solid-phase microextraction couple with liquid chromatography-tandem mass spectrometry (LC/MS/MS). Environ Sci Technol 46(10):5302–5309

    CAS  CrossRef  Google Scholar 

  • Toloti A, Mehrdadi N (2001) Wastewater treatment from antibiotics plant (UASB Reactor). Int J Environ Res 5(1):241–246

    Google Scholar 

  • USEPA (2009) Exposure Factors Handbook: 2009 Update (EPA/600/ R-09/052A Office of Research and Development. National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Van Kerkhof P, Govers R, dos Santos CMA, Strous GJ (2000) Endocytosis and degradation of the growth hormone receptor are proteasome-dependent. J Biol Chem 275(3):1575–1580

    CrossRef  Google Scholar 

  • Vandenberg LN, Maffini MV, Sonnenschein C, Rubin B, Soto AM (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30(1):75–95

    CAS  CrossRef  Google Scholar 

  • Wang J, Wang S (2016) Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. J Environ Manage 182:620–640

    CAS  CrossRef  Google Scholar 

  • WHO (2011) World Health Organization. Guidelines for drinking-water quality, 4th ed. 2011

    Google Scholar 

  • Wu Z, Zhang Z, Chen S, He F, Fu G, Liang W (2007) Nonylphenol and octylphenol in urban eutrophic lakes of the subtropical China. Fresen Environ Bull 16:227–234

    CAS  Google Scholar 

  • Ying GG (2006) Fate, behavior and effects of surfactants and their degradation products in the environment. Environ Int 32(3):417–431

    CAS  CrossRef  Google Scholar 

  • Yoon Y, Ryu J, Oh J, Choi BG, Snyder SA (2010) Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea). Sci Total Environ 408:636–643

    CAS  CrossRef  Google Scholar 

  • Young TA, Heidler J, Matos-Pérez CR, SapkotaA Toler T, Gibson KE, Halden RU (2008) Ab initio and in situ comparison of caffeine, triclosan, and triclocarban as indicators of sewage-derived microbes in surface waters. Environ Sci Technol 42(9):3335–3340

    CAS  CrossRef  Google Scholar 

  • Yu Y, Huang Q, Wang Z, Zhang K, Tang C, Cui J, Feng J, Peng X (2011) Occurrence and behavior of pharmaceuticals, steroid hormones, and endocrine-disrupting personal care products in wastewater and the recipient river water of the Pearl River Delta, South China. J Environ Monit 13:871–878

    CAS  CrossRef  Google Scholar 

  • Zhang Y, De Sanjose S, Bracci PM, Morton LM, Wang R, Brennan P (2008) Personal use of hair dye and the risk of certain subtypes of non-Hodgkin lym-phoma. Am J Epidemiol 167(11):1321–1331

    CrossRef  Google Scholar 

  • Zhao JL, Ying GG, Wang L, Yang JF, Yang XB, Yang LH, Li X (2009) Determination of phenolic endocrine disrupting chemicals and acidic pharmaceuticals in surface water of the Pearl Rivers in South China by gas chromatography–negative chemical ionization–mass spectrometry. Sci Total Environ 407(2):962–974

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Ministry of Higher Education (MOHE) for supporting this research under FRGS vot 1574 and also the Research Management Centre (RMC) UTHM for providing grant IGSP U682 for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adel Ali Saeed Al-Gheethi or Balkis A. Talip .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Noman, E.A., Al-Gheethi, A.A.S., Talip, B.A., Radin Mohamed, R.M.S., Nagao, H., Mohd Kassim, A.H. (2019). Xenobiotic Organic Compounds in Greywater and Environmental Health Impacts. In: Radin Mohamed, R., Al-Gheethi, A., Mohd Kassim, A. (eds) Management of Greywater in Developing Countries. Water Science and Technology Library, vol 87. Springer, Cham. https://doi.org/10.1007/978-3-319-90269-2_5

Download citation