Consequences of the Improper Disposal of Greywater

  • Efaq Ali Noman
  • Adel Ali Saeed Al-Gheethi
  • Radin Maya Saphira Radin Mohamed
  • Balkis A. Talip
  • H. Nagao
  • Amir Hashim Mohd Kassim
  • Siti Asmah Bakar
Chapter
Part of the Water Science and Technology Library book series (WSTL, volume 87)

Abstract

Discharge of greywater into the environment and natural water bodies is the main challenge in the management of greywater. The increase of greywater disposed into the environment has drawn serious attention from the society and the government who endeavour to find a safe alternative way for the disposal of these wastes. The implication for the improper disposal of greywater is associated with infectious agents. This is because the organisms are able to multiply in the environment and might reach the infective dose which causes several diseases in human and animals. In this chapter, the health risks and effects posed by pathogens and heavy metals in disposed greywater to the environment and humans are reviewed. The chapter discusses the level of risk for each component in greywater. It has appeared that eutrophication and water bloom are associated with the discharge of greywater into the natural water due to the high level of nutrients.

Keywords

Discharge Health risk Heavy metals HABs Regulations 

Notes

Acknowledgements

The authors wish to thank the Ministry of Higher Education (MOHE) for supporting this research under FRGS vot 1574 and also the Research Management Centre (RMC) UTHM for providing grant IGSP U682 for this research.

References

  1. Al-Gheethi AA, Norli I, Lalung J, Azieda T, Ab Kadir MO (2013) Reduction of faecal indicators and elimination of pathogens from sewage treated effluents by heat treatment. Caspian J Appl Sci Res 2(2):29–45Google Scholar
  2. Al-Gheethi AA, Abdul-Monem MO, Al-Zubeiry AH, Al-Amery R, Efaq AN, Shamar AM (2014) Effectiveness of selected wastewater treatment plants in Yemen for reduction of faecal indicators and pathogenic bacteria in secondary effluents and sludge. Water Practice Technol 9(3):293–306CrossRefGoogle Scholar
  3. Al-Gheethi AA, Norli I, Efaq AN, Bala JD, Al-Amery A (2015a) Solar disinfection and lime treatment processes for reduction of pathogenic bacteria in sewage treated effluents and biosolids before reuse for agriculture in Yemen. Water Reuse Des 5(3):419–429Google Scholar
  4. Al-Gheethi AA, Aisyah M, Bala JD, Efaq AN, Norli I (2015b) Prevalence of antimicrobial resistance bacteria in non-clinical environment 4th International Conference on Environmental Research and Technology (ICERT 2015) on 27–29 May 2015 at Parkroyal Resort, Penang, MalaysiaGoogle Scholar
  5. Al-Gheethi AA, Mohamed RM, Rahman AA, Mas Rahayu J, Amir HK (2015c) Treatment of wastewater from car washes using natural coagulation and filtration system, International Conference On Sustainable Environment & Water Research (ICSEWR2015), 25–26 Oct 2015, Johor Baru, MalaysiaGoogle Scholar
  6. Al-Gheethi AA, Lalung J, Efaq AN, Bala JD, NorliI (2015d) Removal of heavy metals and β-lactam antibiotics from sewage treated effluent by bacteria. Clean Technol Environ Policy 17(8):2101–2123Google Scholar
  7. Al-Gheethi AA, Mohamed RM, Efaq AN, Amir HK (2016a) Reduction of microbial risk associated with greywater utilized for irrigation. Water Health J 14(3):379–398CrossRefGoogle Scholar
  8. Al-Gheethi AA, Mohamed RMS, Efaq AN, Norli I, Hashim A, Ab Kadir MO (2016b) Bioaugmentation process of sewage effluents for the reduction of pathogens, heavy metals and antibiotics. J Water Health 14(5):780–795CrossRefGoogle Scholar
  9. American Water Works Association (AWWA) (2006) Waterborne Pathogens. AWWA Manual M48, 2nd edn. American Water Works AssociationGoogle Scholar
  10. Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25(4):704–726CrossRefGoogle Scholar
  11. Anonymous (1996) Waterborne pathogens kill 10 M–20 M people/year. World Water Environ EngGoogle Scholar
  12. APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association (APHA), Washington, D.CGoogle Scholar
  13. Atiku A, Mohamed RMSR, Al-Gheethi AA, Wurochekke AA, Kassim Amir H (2016) Harvesting microalgae biomass from the phycoremediation process of greywater. Environ Sci Pollut Res 23(24):24624–24641CrossRefGoogle Scholar
  14. Banana AS, Mohamed RM, Al-Gheethi AA (2016) Mercury pollution for marine environment at Farwa Island, Libya. J Enviro Health Sci Eng 14:5Google Scholar
  15. Bani-Melhem K, Al-Qodah Z, Al-Shannag M, Qasaimeh A, Qtaishat MR, Alkasrawi M (2015) On the performance of real grey water treatment using a submerged membrane bioreactor system. J. Membr Sci 476:40–49CrossRefGoogle Scholar
  16. Baun A, Eriksson E, Ledin A, Mikkelsen PS (2006) A methodology for ranking and hazard identification of xenobiotic organic compounds in urban stormwater. Sci Total Environ 370(1):29–38CrossRefGoogle Scholar
  17. Bumann D, Hueck C, Aebischer T, Meyer TF (2000) Recombinant live Salmonella spp. for human vaccination against heterologous pathogens. FEMS Immunol Med Microbiol 27(4):357–364CrossRefGoogle Scholar
  18. Buzrul S (2009) Modeling and predicting inactivation of Escherichia coli under isobaric and dynamic high hydrostatic pressure. Innovative Food Sci Emerging Technol 10(4):391–395CrossRefGoogle Scholar
  19. Casanova LM, Gerba CP, Karpiscak M (2001) Chemical and microbial characterization of household greywater. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 36(4):395–401CrossRefGoogle Scholar
  20. Clark S, Graz M (2010) Rotavirus. Retrieved from http://waterbornepathogens.susana.org/menuviruses/rotaviruses on 12 Oct 2016
  21. Coupe S, Delabre K, Pouillot R, Houdart S, Santillana-Hayat M, Derouin F (2006) Detection of Cryptosporidium, Giardia and Enterocytozoon bieneusi in surface water, including recreational areas: a one-year prospective study. FEMS Immunol Med Microbiol 47(3):351–359CrossRefGoogle Scholar
  22. Cox CS (1987) The aerobiological pathway of microorganisms. Wiley, New York, NYGoogle Scholar
  23. Davis BD, Dulbecco R, Eisen HN, Ginsberg HS, Wood WE (1968) Principles of microbiology and immunology, New York, NY; Harper and Row Publishers, Inc., Denmark. APMIS 106(6):606–622Google Scholar
  24. DeRegnier DP, Cole L, Schupp DG, Erlandsen SL (1989) Viability of Giardia cysts suspended in lake, river, and tap water. Appl Environ Microbiol 55:1223–1229Google Scholar
  25. Dobrindt U, Hacker J (2008) Targeting virulence traits: potential strategies to combat extraintestinal pathogenic E. coli infections. Curr Opin Microbiol 11(5):409–413CrossRefGoogle Scholar
  26. DOE (2010) Environmental requirements: a guide for investor, Appendix K1 & K2: acceptable condition of sewage discharge of Standard A and B. Department of Environment Malaysia, KLGoogle Scholar
  27. Ducluzeau R, Hudault S, Galpin JV (1976) Inoculation of the digestive tract of axenic mice with the autochthonous bacteria of mineral water. Eur J Appl. Microbiol 2(2):127–134CrossRefGoogle Scholar
  28. Efaq AN, Ab Rahman NNN, Nagao H, Al-Gheethi AA, Shahadat Md, Ab Kadir MO (2015) Supercritical carbon dioxide as non-thermal alternative technology for safe handling of clinical wastes. J Environ Proces 2(4):797–822CrossRefGoogle Scholar
  29. El-Lathy AM, El-Taweel GE, El-Sonosy M, Samhan FA, Moussa TA (2009) Determination of pathogenic bacteria in wastewater using conventional and PCR techniques. Environ Biotechnol 5:73–80Google Scholar
  30. Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392(6676):598–601CrossRefGoogle Scholar
  31. Facklam RR (1991) Streptococcus and related catalase-negative gram-positive cocci. Manual Clin Microbiol 238–257Google Scholar
  32. Fijalkowski KL, Kacprzak MJ, Rorat A (2014) Occurrence changes of Escherichia coli (including O157:H7 serotype) in wastewater and sewage sludge by quantitation method of (EMA) real time-PCR. Des Water Treat 52:19–21CrossRefGoogle Scholar
  33. Food and Drug Administration (FDA) (2012) Bad bug book, foodborne pathogenic microorganisms and natural toxins, 2nd edn. Retrieved from http://www.fda.gov/downloads/Food/FoodborneIllnessContaminants/UCM297627.pdf on 12 Oct 2016
  34. Franz E, van Hoek AH, El BouwAarts HJM (2011) Variability of Escherichia coli O157 strain survival in manure-amended soil in relation to strain origin, virulence profile, and carbon nutrition profile. Appl Environ Microbiol 77(22):8088–8096CrossRefGoogle Scholar
  35. Freitas AR, Coque TM, Novais C, Hammerum AM, Lester CH, Zervos MJ, Peixe L (2011) Human and swine hosts share vancomycin-resistant Enterococcus faecium CC17 and CC5 and Enterococcus faecalis CC2 clonal clusters harboring Tn1546 on indistinguishable plasmids. J Clin Microbiol 49(3):925–931CrossRefGoogle Scholar
  36. Fujioka RS, Hurst CJ, Knudsen GR, McInerney MJ, Stezenbach LD, Walter MV (eds) (1997) Indicators of marine recreational water quality. In: Manual of environmental microbiology. ASM Press, Washington, D.C, pp 176–183Google Scholar
  37. Glibert PM (2007) Eutrophication and harmful algal blooms: a complex global issue, examples from the Arabian seas including Kuwait Bay, and an Introduction to the Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB) programme. Int J Oceans Oceanogr 2:157–169Google Scholar
  38. Gordon DM, Bauer S, Johnson JR (2002) The genetic structure of E. coli populations in primary and secondary habitats. J Microbiol 148(5):1513–1522CrossRefGoogle Scholar
  39. Guan TY, Holley RA (2003) Pathogen survival in swine manure environments and transmission of human enteric illness—a review. J Environ Qual 32(2):383–392CrossRefGoogle Scholar
  40. Haley PJ, Finch GL, Hoover MD, Cuddihy R (1990) The acute toxicity of inhaled beryllium metal in rats. Fund Appl Toxicol 15(4):767–778CrossRefGoogle Scholar
  41. Hallegraeff GM (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32(2):79–99CrossRefGoogle Scholar
  42. Iacovski RB, Barardi CRM, Simões CO (2004) Detection and enumeration of Cryptosporidium sp. oocysts in sewage sludge samples from the city of Florianópolis (Brazil) by using immunomagnetic separation combined with indirect immunofluorescence assay. Waste Manage Res 22(3):171–176CrossRefGoogle Scholar
  43. Jais NM, Mohamed RMSR, Al-Gheethi AA, Hashim A (2017) Dual role of phycoremediation of wet market wastewater for nutrients and heavy metals removal and microalgae biomass production. Clean Technol Environ Policy.  https://doi.org/10.1007/s10098-016-1235-7CrossRefGoogle Scholar
  44. Jameel AT, Olanrewaju A (2011) Aerobic biodegradation of oil and grease in palm oil mill effluent using consortium of microorganisms. In: Alam MDZ, Jameel AT, Amid A (eds) Current research and development in biotechnology engineering at International Islamic University Malaysia (IIUM), vol III. IIUM Press, Kuala Lumpur, pp 43–51. ISBN 9789674181444Google Scholar
  45. Joseph S, Bhat KG (2000) Effect of iron on the survival of Vibrio cholerae in water. Ind J Med Res 111:115–117Google Scholar
  46. Katukiza AY, Ronteltap M, Niwagaba CB, Kansiime F, Lens PNL (2014) Grey water treatment in urban slums by a filtration system: optimization of the filtration medium. J Environ Manage 146:131–141CrossRefGoogle Scholar
  47. KDHE (2015) Harmful Algae Blooms: A TOOL KIT for Health Departments. Kansas Department of Health and Environment Bureau of Epidemiology and Public Health Informatics, 1000 SW Jackson Street, Suite 330. Topeka, KS. 66612-1365. www.kdheks.gov/algae-illness/index.htm
  48. Kerr M, Fitzgerald M, Sheridan J, McDowell DA, Blair IS (1999) Survival of Escherichia coli O157: H7 in bottled natural mineral water. J. Appl Microbial. 87(6):833–841CrossRefGoogle Scholar
  49. Kiil K, Binnewies TT, Willenbrock H, Hansen SK, Yang L, Jelsbak L, Ussery DW, Friis C (2008) Chapter 1 comparative genomics of pseudomonas. In: Rehm BHA (ed) Pseudomonas model organism, pathogen, cell factory. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  50. King BJ, Keegan RA, Monis PT, Saint CP (2005) Environmental temperature controls Cryptosporidium Oocyst metabolic rate and associated retention of infectivity. Appl Environ Microbiol 71:3848–3857CrossRefGoogle Scholar
  51. Konopka A (2009) What is microbial community ecology & quest. ISME J 3(11):1223–1230CrossRefGoogle Scholar
  52. Kumar T, Majid MA, Onichandran S, Jaturas N, Andiappan H, Salibay CC, Phiriyasamith S (2016) Presence of Cryptosporidium parvum and Giardia lamblia in water samples from Southeast Asia: towards an integrated water detection system. Infect Dis Poverty 5(1):1CrossRefGoogle Scholar
  53. Leggett HC, Cornwallis CK, West S (2012) Mechanism of pathogenesis, infective dose and virulence in human parasites. PLoS Pathog 8(2):e1002512.  https://doi.org/10.1371/journal.ppat.1002512CrossRefGoogle Scholar
  54. Maimon A, Friedler E, Gross A (2014) Parameters affecting greywater quality and its safety for reuse. Sci Total Environ 487:20–25CrossRefGoogle Scholar
  55. Martin S, Griswold W (2009) Human health effects of heavy metals. Environ Sci Technol Briefs Citizens 15:1–6Google Scholar
  56. Merikanto I, Laakso J, Kaitala V (2012) Outside-host growth of pathogens attenuates epidemiological outbreaks. PLoS ONE 7(11):50–58CrossRefGoogle Scholar
  57. Molleda P, Blanco I, Ansola G, de Luis E (2008) Removal of wastewater pathogen indicators in a constructed wetland in Leon, Spain. Ecol Eng 33:252–257CrossRefGoogle Scholar
  58. Moore BC, Martinez E, Gay JM, Rice DH (2003) Survival of Salmonella enterica in freshwater and sediments and transmission by the aquatic midge Chironomus tentans (Chironomidae: Diptera). Appl Environ Microbiol 69(8):4556–4560CrossRefGoogle Scholar
  59. Nies DH (1999) Microbial heavy metals resistance. Appl Microbiol Biotechnol 51(6):730–750CrossRefGoogle Scholar
  60. NIOSH (2002) Violence: occupational hazards in hospitals, Centers for Disease Control and Prevention (2002-101)Google Scholar
  61. Nocker A, Gerba C (2010) Enterovirus. http://waterbornepathogens.susana.org/menuviruses/enterovirus on 12 Oct 2016
  62. Patel M, Isaacson M, Gouws E (1995) Effect of iron and pH on the survival of Vibrio cholerae in water. Trans R Soc Trop Med Hyg 89(2):175–177CrossRefGoogle Scholar
  63. Podschun R, Ullmann U (1998) Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11(4):589–603Google Scholar
  64. Rangel-Martıneza C, Jime’nez-Gonza’lezb DE, Martı’nez-Ocanaa J, Romero-Valdovinosa M, Castillo-Rojasc G, Espinosa-Garcıad AC, Lo’pez-Vidalc Y, Mazari-Hiriartd M, Maravillaa P (2015) Identification of opportunistic parasites and helminth ova in concentrated water samples using a hollow-fibre ultrafiltration system. Urban Water J 12:440–444CrossRefGoogle Scholar
  65. Rao V, Seidel KM, Goyal SM, Metcalf TG, Melnick JL (1984) Isolation of enteroviruses from water, suspended solids, and sediments from Galveston Bay: survival of poliovirus and rotavirus adsorbed to sediments. Appl Environ Microbiol 48:404–409Google Scholar
  66. Renois F, Jacques J, Guillard T, Moret H, Pluot M, Andreoletti L, de Champs C (2011) Preliminary investigation of a mice model of Klebsiella pneumoniae subsp. ozaenae induced pneumonia. Microbes Infect 13(12):1045–1051CrossRefGoogle Scholar
  67. Robertson L, Nocker A (2010) Giardia. Retrieved from http://waterbornepathogens.susana.org/menuprotozoa/giardia on 12 Oct 2016
  68. Robertson LJ, Campbell AT, Smith H (1992) Survival of oocysts of Cryptosporidium parvum under various environmental pressures. Appl Environ Microbiol 58:3494–3500Google Scholar
  69. Rodda N, Salukazana L, Jackson SAF, Smith MT (2011) Use of domestic greywater for small-scale irrigation of food crops: Effects on plants and soil. Phys Chem Earth Parts A/B/C 36(14):1051–1062CrossRefGoogle Scholar
  70. Rose JB, Atlas RM, Gerba CP, Gilchrist MJR, Le-Chevallier MW, Sobsey MD, Yates MV, Cassell GH, Tiedje JM (1999) Microbial pollutants in our nation’s waters: environmental and public health issues. Am Soc MicrobiolGoogle Scholar
  71. Rouch DA, Mondal T, Pai S, Glauche G, Fleming VA, Thurbon N, Blackbeard J, Smith SR, Deighton M (2011) Microbial safety of air-dried and rewetted biosolids. J Water Health 9(2):403–414CrossRefGoogle Scholar
  72. Schmid-Hempel P, Frank SA (2007) Pathogenesis, virulence, and infective dose. PLoSPathog 3:1372–1373.  https://doi.org/10.1371/journal.ppat.0030147CrossRefGoogle Scholar
  73. Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Ind J Pharmacol 43(3):246CrossRefGoogle Scholar
  74. Smith EH (1996) Uptake of heavy metals in batch systems by a recycled iron-bearing material. Water Res 30(10):2424–2434CrossRefGoogle Scholar
  75. Strauch D (1991) Survival of pathogenic micro-organisms and parasites in excreta, manure and sewage sludge. Revue Scientifiqueet Technique (Int Off Epizootics) 10(3):813–846CrossRefGoogle Scholar
  76. Strauch D (1998) Pathogenic micro-organisms in sludge. Anaerobic digestion and disinfection methods to make sludge usable as fertiliser. Eur Water Manage 1(2):12–26Google Scholar
  77. Vickery AM (1993) Strains of methicillin-resistant Staphylococcus aureus isolated in Australian hospitals from 1986 to 1990. J Hosp Infect 24(2):139–151CrossRefGoogle Scholar
  78. Vinnerås B, Björklund A, Jönsson H (2003) Thermal composting of faecal matter as treatment and possible disinfection method—laboratory-scale and pilot-scale studies. Bioresour Technol 88(1):47–54CrossRefGoogle Scholar
  79. Wang H, Ibekwe AM, Ma J, Wu L, Lou J, Wu Z, Liu R, Xu J, Yates SR (2014) A glimpse of Escherichia coli O157:H7 survival in soils from Eastern China. Sci Total Environ 476–477:49–56CrossRefGoogle Scholar
  80. WHO (2003) Heterotrophic plate counts and drinking-water safety. In: Bartram J, Cotruvo J, Exner M, Fricker C, Glasmacher A (eds) IWA Publishing, London, UK. ISBN:1 84339 025 6Google Scholar
  81. Winfield MD, Groisman EA (2003) Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl Environ Microbiol 69(7):3687–3694CrossRefGoogle Scholar
  82. Winward GP (2007) Disinfection of Grey water. PhD thesis, Centre for Water Sciences, Department of Sustainable Systems, School of Applied Sciences, Cranfield UniversityGoogle Scholar
  83. Winward GP, Avery LM, Frazer-Williams R, Pidoua M, Jeffrey P, Stephenson T, Jefferson B (2008) A study of the microbial quality of grey water and an evaluation of treatment technologies for reuse. Ecol Eng 32:187–197CrossRefGoogle Scholar
  84. Wurochekke AA, Mohamed RMS, Al-Gheethi AA, Amir HM, Matias-Peralta HM (2016) Household greywater treatment methods using natural materials and their hybrid system. J Water Health 14(6):914–928CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Efaq Ali Noman
    • 1
    • 2
  • Adel Ali Saeed Al-Gheethi
    • 3
  • Radin Maya Saphira Radin Mohamed
    • 3
  • Balkis A. Talip
    • 4
  • H. Nagao
    • 5
  • Amir Hashim Mohd Kassim
    • 3
  • Siti Asmah Bakar
    • 3
  1. 1.Faculty of Applied Sciences and Technology (FAST)Universiti Tun Hussein Onn Malaysia (UTHM)PagohMalaysia
  2. 2.Department of Applied Microbiology, Faculty Applied SciencesTaiz UniversityTaizYemen
  3. 3.Micro-Pollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil and Environmental EngineeringUniversiti Tun Hussein Onn Malaysia (UTHM)Parit Raja, Batu PahatMalaysia
  4. 4.Faculty of Applied Sciences and Technology (FAST)Universiti Tun Hussein Onn Malaysia (UTHM)Pagoh MuarMalaysia
  5. 5.School of Biological SciencesUniversiti Sains Malaysia (USM)George TownMalaysia

Personalised recommendations