Numerical Simulations for the Detection of Leakages in Bridge Deck Membranes Through Resistivity Measurements

  • Carla DriessenEmail author
  • Michael Raupach
Conference paper
Part of the RILEM Bookseries book series (RILEM, volume 17)


Through measurement of the electrolytic resistance between two carbon meshes embedded in a textile reinforced concrete interlayer on bridges, a large scale monitoring of humidity is implemented. The electrolyte resistance is measured using alternating current. Decreasing values in the measured electrolyte resistance indicate water ingress through leakages in a surface-applied membrane. The monitoring will have a positive effect on the durability of a bridge construction since defects in the membrane can be detected in an early stage which allows cost-effective and timely measures to be taken to prevent corrosion initiation of the reinforcing steel. Through numerical simulations the theoretical size of a detectable leakage area is calculated which depends on the geometry of the leakages, the electrolyte resistance of the mortar in wet and dry condition, the position of the leakage, and other boundary conditions.


Bridge Deck Mesh Carbon Electrolytic Resistance Leakage Zone Leakage Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the BMBF for sponsoring the project and the project executing organization, “VDI Technologiezentrum GmbH (VDI TZ)” for the support.

The project partners are: Bundesanstalt für Straßenwesen (BASt), Eurovia Beton GmbH NL Bauwerksinstandsetzung (Projektkoordinator), FTA Forschungsgesellschaft für Textiltechnik Albstadt mbH, Massenberg GmbH, instakorr GmbH (Darmstadt) and Sto Cretec GmbH, Tochtergesellschaft der Sto SE & Co. KGaA.


  1. 1.
    Raupach M, Gulikers J, Reichling K (2013) Condition survey with embedded sensors regarding reinforcement corrosion: Bauwerksüberwachung mit eingebetteten Sensoren hinsichtlich der Korrosion von Stahl in Beton. In Materials and corrosion, vol 64. Nr 2, pp 141–146. ISSN 1521-4176CrossRefGoogle Scholar
  2. 2.
    Raupach M, Dauberschmidt C, Wolff L (2006) Monitoring the moisture distribution in concrete structures. In: Alexander MG, Beushausen H-D, Dehn F, Moyo P (eds) Proceedings of the International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR), Cape Town, South Africa, 21–23 November, Taylor & Francis Group, London, pp 166–167Google Scholar
  3. 3.
    Raupach M, Dauberschmidt C, Warkus J (2003) Indirekte Bestimmung der Feuchteverteilung in zementösen Baustoffen durch Elektrolytwiderstandsmessungen (in German). In: Innovative Feuchtemessung in Forschung und Praxis, Bauwesen-Geotechnik- Umwelttechnik, Kolloquium mit Workshop, 3./4. Juli 2003. SMG Soil Moisture Group der Universität Karlsruhe, KarlsruheGoogle Scholar
  4. 4.
    Driessen C, Raupach M (2016) Intelligent, multifunctional textile reinforced concrete interlayer for bridges. In: Dehn F, Beushausen H-D, Alexander MG, Moyo P (eds) Proceedings of the 4th International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR), Leipzig, 5–7 October 2015. CRP Press Taylor & Francis Group, London [u.a]. ISBN 978-1-138-02843-2Google Scholar
  5. 5.
    Moosbrugger C. Electrical and magnetic properties of metals. ASM International. Materials Properties Database Committee. ISBN: 0-87170-690-3Google Scholar
  6. 6.
    Harnisch J (2003) Untersuchungen zum nachträglichen Einbau von Multiring-Elektroden im Beton: Investigations on Subsequently Embedded Multi-Ring-Electrodes in Concrete. Aachen, Technische Hochschule, Fachbereich 3, Institut für Bauforschung, DiplomarbeitGoogle Scholar
  7. 7.
    Brameshuber W, Raupach M, Schröder P, Dauberschmidt C (2003) Non-destructive determination of the water content in the concrete cover using the multi-ring-electrode. In: International Symposium Non-Destructive Testing in Civil Engineering (NDT-CE), Berlin, September 16–19, 2003, Poster No. 41. Deutsche Gesellschaft für Zerstörungsfreie Prüfung, DGZfP, BerlinGoogle Scholar
  8. 8.
    Raupach M (1992) Zur chloridinduzierten Makroelementkorrosion von Stahl in Beton. In: Schriftenreihe des deutschen Ausschusses für Stahlbeton. Beuth, Berlin, pp 16–17Google Scholar

Copyright information

© RILEM 2019

Authors and Affiliations

  1. 1.Institute of Building Materials ResearchRWTH Aachen UniversityAachenGermany

Personalised recommendations