Skip to main content

Programmed Cell Death in CIRI

  • Chapter
  • First Online:
Book cover Cerebral Ischemic Reperfusion Injuries (CIRI)

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

  • 495 Accesses

Abstract

Neurons in the ischemic penumbra or peri-infarct zone may undergo delayed cell death which called programmed cell death (PCD) and thus they are potentially recoverable for some time after the onset of stroke. There were three major morphologies of PCD in the cerebral ischemic injury, including apoptosis, autophagy and programmed necrosis (also known as necroptosis). In this review we will discuss the characteristics, molecular mechanism of each PCD mode and their role in cerebral ischemia and reperfusion injury (CIRI), furthermore crosstalk between various modes of PCD is also dicussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ouyang YB, Giffard RG. Er-mitochondria crosstalk during cerebral ischemia: Molecular chaperones and er-mitochondrial calcium transfer. Int J Cell Biol. 2012;2012:493934.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Lipton P. Ischemic cell death in brain neurons. Physiol Rev. 1999;79:1431–568.

    Article  PubMed  CAS  Google Scholar 

  3. Baron JC. Mapping the ischaemic penumbra with pet: implications for acute stroke treatment. Cerebrovasc Dis. 1999;9:193–201.

    Article  PubMed  CAS  Google Scholar 

  4. Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia – the ischemic penumbra. Stroke. 1981;12:723–5.

    Article  CAS  PubMed  Google Scholar 

  5. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ. 2012;19:107–20.

    Article  PubMed  CAS  Google Scholar 

  6. Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell. 2011;147:742–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407:770–6.

    Article  PubMed  CAS  Google Scholar 

  8. Klionsky DJ. The molecular machinery of autophagy: unanswered questions. J Cell Sci. 2005;118:7–18.

    Article  PubMed  CAS  Google Scholar 

  9. Conrad M, Angeli JP, Vandenabeele P, Stockwell BR. Regulated necrosis: disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 2016;15:348–66.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol. 2004;16:663–9.

    Article  PubMed  CAS  Google Scholar 

  11. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495–516.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009;40:e331–9.

    Article  PubMed  Google Scholar 

  13. Zhu C, Wang X, Xu F, Bahr BA, Shibata M, Uchiyama Y, et al. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ. 2005;12:162–76.

    Article  PubMed  CAS  Google Scholar 

  14. Zhu C, Xu F, Wang X, Shibata M, Uchiyama Y, Blomgren K, et al. Different apoptotic mechanisms are activated in male and female brains after neonatal hypoxia-ischaemia. J Neurochem. 2006;96:1016–27.

    Article  PubMed  CAS  Google Scholar 

  15. Rai NK, Tripathi K, Sharma D, Shukla VK. Apoptosis: a basic physiologic process in wound healing. Int J Low Extrem Wounds. 2005;4:138–44.

    Article  PubMed  Google Scholar 

  16. Namura S, Zhu J, Fink K, Endres M, Srinivasan A, Tomaselli KJ, et al. Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci. 1998;18:3659–68.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Siegel C, McCullough LD. Nad+ depletion or par polymer formation: which plays the role of executioner in ischaemic cell death? Acta Physiol. 2011;203:225–34.

    Article  CAS  Google Scholar 

  18. Benchoua A, Guegan C, Couriaud C, Hosseini H, Sampaio N, Morin D, et al. Specific caspase pathways are activated in the two stages of cerebral infarction. J Neurosci. 2001;21:7127–34.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Hardwick JM, Chen YB, Jonas EA. Multipolar functions of bcl-2 proteins link energetics to apoptosis. Trends Cell Biol. 2012;22:318–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Webster KA, Graham RM, Thompson JW, Spiga MG, Frazier DP, Wilson A, et al. Redox stress and the contributions of bh3-only proteins to infarction. Antioxid Redox Signal. 2006;8:1667–76.

    Article  PubMed  CAS  Google Scholar 

  21. Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ. From basic apoptosis discoveries to advanced selective bcl-2 family inhibitors. Nat Rev Drug Discov. 2017;16:273–84.

    Article  PubMed  CAS  Google Scholar 

  22. Zhai D, Chin K, Wang M, Liu F. Disruption of the nuclear p53-gapdh complex protects against ischemia-induced neuronal damage. Mol Brain. 2014;7:20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Loh KP, Huang SH, De Silva R, Tan BK, Zhu YZ. Oxidative stress: apoptosis in neuronal injury. Curr Alzheimer Res. 2006;3:327–37.

    Article  PubMed  CAS  Google Scholar 

  24. Wang Y, Wan C, Yu S, Yang L, Li B, Lu T, et al. Upregulated expression of nf-yc contributes to neuronal apoptosis via proapoptotic protein bim in rats' brain hippocampus following middle cerebral artery occlusion (mcao). J Mol Neurosci. 2014;52:552–65.

    Article  PubMed  CAS  Google Scholar 

  25. Armugam A, Cher CD, Lim K, Koh DC, Howells DW, Jeyaseelan K. A secretory phospholipase a2-mediated neuroprotection and anti-apoptosis. BMC Neurosci. 2009;10:120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Li D, Li X, Wu J, Li J, Zhang L, Xiong T, et al. Involvement of the jnk/foxo3a/bim pathway in neuronal apoptosis after hypoxic-ischemic brain damage in neonatal rats. PLoS One. 2015;10:e0132998.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ma M, Wang X, Ding X, Teng J, Shao F, Zhang J. Numb/notch signaling plays an important role in cerebral ischemia-induced apoptosis. Neurochem Res. 2013;38:254–61.

    Article  PubMed  CAS  Google Scholar 

  28. Mergenthaler P, Dirnagl U, Meisel A. Pathophysiology of stroke: lessons from animal models. Metab Brain Dis. 2004;19:151–67.

    Article  PubMed  CAS  Google Scholar 

  29. Simard JM, Tarasov KV, Gerzanich V. Non-selective cation channels, transient receptor potential channels and ischemic stroke. Biochim Biophys Acta. 2007;1772:947–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Culmsee C, Zhu C, Landshamer S, Becattini B, Wagner E, Pellecchia M, et al. Apoptosis-inducing factor triggered by poly(adp-ribose) polymerase and bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia. J Neurosci. 2005;25:10262–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sugawara T, Fujimura M, Noshita N, Kim GW, Saito A, Hayashi T, et al. Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx. 2004;1:17–25.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cho BB, Toledo-Pereyra LH. Caspase-independent programmed cell death following ischemic stroke. J Investig Surg. 2008;21:141–7.

    Article  Google Scholar 

  33. Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, et al. Mitochondrio-nuclear translocation of aif in apoptosis and necrosis. FASEB J. 2000;14:729–39.

    Article  CAS  PubMed  Google Scholar 

  34. Love S. Apoptosis and brain ischaemia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2003;27:267–82.

    Article  CAS  Google Scholar 

  35. Tanaka H, Yokota H, Jover T, Cappuccio I, Calderone A, Simionescu M, et al. Ischemic preconditioning: neuronal survival in the face of caspase-3 activation. J Neurosci. 2004;24:2750–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cao G, Xiao M, Sun F, Xiao X, Pei W, Li J, et al. Cloning of a novel apaf-1-interacting protein: a potent suppressor of apoptosis and ischemic neuronal cell death. J Neurosci. 2004;24:6189–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fujimura M, Morita-Fujimura Y, Kawase M, Copin JC, Calagui B, Epstein CJ, et al. Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome c and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice. J Neurosci. 1999;19:3414–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao Y, Liang W, Hu X, Zhang W, Stetler RA, Vosler P, et al. Neuroprotection against hypoxic-ischemic brain injury by inhibiting the apoptotic protease activating factor-1 pathway. Stroke. 2010;41:166–72.

    Article  PubMed  Google Scholar 

  39. Siren AL, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, et al. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci U S A. 2001;98:4044–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Martin-Villalba A, Herr I, Jeremias I, Hahne M, Brandt R, Vogel J, et al. Cd95 ligand (fas-l/apo-1l) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons. J Neurosci. 1999;19:3809–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hasegawa Y, Suzuki H, Sozen T, Rolland W, Zhang JH. Activation of sphingosine 1-phosphate receptor-1 by fty720 is neuroprotective after ischemic stroke in rats. Stroke. 2010;41:368–74.

    Article  PubMed  CAS  Google Scholar 

  42. Cao Y, Mao X, Sun C, Zheng P, Gao J, Wang X, et al. Baicalin attenuates global cerebral ischemia/reperfusion injury in gerbils via anti-oxidative and anti-apoptotic pathways. Brain Res Bull. 2011;85:396–402.

    Article  PubMed  CAS  Google Scholar 

  43. Chen S, Peng H, Rowat A, Gao F, Zhang Z, Wang P, et al. The effect of concentration and duration of normobaric oxygen in reducing caspase-3 and -9 expression in a rat-model of focal cerebral ischaemia. Brain Res. 2015;1618:205–11.

    Article  PubMed  CAS  Google Scholar 

  44. Fuchs Y, Steller H. Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat Rev Mol Cell Biol. 2015;16:329–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W, et al. Inhibition of caspases increases the sensitivity of l929 cells to necrosis mediated by tumor necrosis factor. J Exp Med. 1998;187:1477–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kawahara A, Ohsawa Y, Matsumura H, Uchiyama Y, Nagata S. Caspase-independent cell killing by fas-associated protein with death domain. J Cell Biol. 1998;143:1353–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol. 2010;11:700–14.

    Article  PubMed  CAS  Google Scholar 

  48. Gunther C, Martini E, Wittkopf N, Amann K, Weigmann B, Neumann H, et al. Caspase-8 regulates tnf-alpha-induced epithelial necroptosis and terminal ileitis. Nature. 2011;477:335–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, et al. Catalytic activity of the caspase-8-flip(l) complex inhibits ripk3-dependent necrosis. Nature. 2011;471:363–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R, et al. Rip3 mediates the embryonic lethality of caspase-8-deficient mice. Nature. 2011;471:368–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Xu Y, Wang J, Song X, Qu L, Wei R, He F, et al. Rip3 induces ischemic neuronal DNA degradation and programmed necrosis in rat via aif. Sci Rep. 2016;6:29362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Zhang J, Yang Y, He W, Sun L. Necrosome core machinery: Mlkl. Cell Mol Life Sci. 2016;73:2153–63.

    Article  PubMed  CAS  Google Scholar 

  53. Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ, et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell. 2008;135:1311–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase rip as effector molecule. Nat Immunol. 2000;1:489–95.

    Article  PubMed  CAS  Google Scholar 

  55. Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS, et al. The rip1/rip3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell. 2012;150:339–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of rip3 kinase. Cell. 2012;148:213–27.

    Article  PubMed  CAS  Google Scholar 

  57. Wang Z, Jiang H, Chen S, Du F, Wang X. The mitochondrial phosphatase pgam5 functions at the convergence point of multiple necrotic death pathways. Cell. 2012;148:228–43.

    Article  PubMed  CAS  Google Scholar 

  58. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;1:112–9.

    Article  PubMed  CAS  Google Scholar 

  59. Vieira M, Fernandes J, Carreto L, Anuncibay-Soto B, Santos M, Han J, et al. Ischemic insults induce necroptotic cell death in hippocampal neurons through the up-regulation of endogenous rip3. Neurobiol Dis. 2014;68:26–36.

    Article  PubMed  CAS  Google Scholar 

  60. Yin B, Xu Y, Wei RL, He F, Luo BY, Wang JY. Inhibition of receptor-interacting protein 3 upregulation and nuclear translocation involved in necrostatin-1 protection against hippocampal neuronal programmed necrosis induced by ischemia/reperfusion injury. Brain Res. 2015;1609:63–71.

    Article  PubMed  CAS  Google Scholar 

  61. Fakharnia F, Khodagholi F, Dargahi L, Ahmadiani A. Prevention of cyclophilin d-mediated mptp opening using cyclosporine-a alleviates the elevation of necroptosis, autophagy and apoptosis-related markers following global cerebral ischemia-reperfusion. J Mol Neurosci. 2017;61:52–60.

    Article  PubMed  CAS  Google Scholar 

  62. Dong Y, Bao C, Yu J, Liu X. Receptor-interacting protein kinase 3-mediated programmed cell necrosis in rats subjected to focal cerebral ischemia-reperfusion injury. Mol Med Rep. 2016;14:728–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Miao W, Qu Z, Shi K, Zhang D, Zong Y, Zhang G, et al. Rip3 s-nitrosylation contributes to cerebral ischemic neuronal injury. Brain Res. 2015;1627:165–76.

    Article  PubMed  CAS  Google Scholar 

  64. Melo-Lima S, Celeste Lopes M, Mollinedo F. Necroptosis is associated with low procaspase-8 and active ripk1 and −3 in human glioma cells. Oncoscience. 2014;1:649–64.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O, Teng X, et al. Identification of rip1 kinase as a specific cellular target of necrostatins. Nat Chem Biol. 2008;4:313–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Vandenabeele P, Declercq W, Vanden Berghe T. Necrotic cell death and 'necrostatins': Now we can control cellular explosion. Trends Biochem Sci. 2008;33:352–5.

    Article  PubMed  CAS  Google Scholar 

  67. Li H, Gao A, Feng D, Wang Y, Zhang L, Cui Y, et al. Evaluation of the protective potential of brain microvascular endothelial cell autophagy on blood-brain barrier integrity during experimental cerebral ischemia-reperfusion injury. Transl Stroke Res. 2014;5:618–26.

    Article  PubMed  Google Scholar 

  68. Xu Y, Wang J, Song X, Wei R, He F, Peng G, et al. Protective mechanisms of ca074-me (other than cathepsin-b inhibition) against programmed necrosis induced by global cerebral ischemia/reperfusion injury in rats. Brain Res Bull. 2016;120:97–105.

    Article  PubMed  CAS  Google Scholar 

  69. Yoshimori T. Autophagy: paying Charon’s toll. Cell. 2007;128:833–6.

    Article  PubMed  CAS  Google Scholar 

  70. Shibutani ST, Yoshimori T. A current perspective of autophagosome biogenesis. Cell Res. 2014;24:58–68.

    Article  PubMed  CAS  Google Scholar 

  71. Rabinowitz JD, White E. Autophagy and metabolism. Science. 2010;330:1344–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Russell RC, Yuan HX, Guan KL. Autophagy regulation by nutrient signaling. Cell Res. 2014;24:42–57.

    Article  PubMed  CAS  Google Scholar 

  73. Kourtis N, Tavernarakis N. Autophagy and cell death in model organisms. Cell Death Differ. 2009;16:21–30.

    Article  PubMed  CAS  Google Scholar 

  74. Clarke PG, Puyal J. Autophagic cell death exists. Autophagy. 2012;8:867–9.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Shi R, Weng J, Zhao L, Li XM, Gao TM, Kong J. Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci Ther. 2012;18:250–60.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, et al. Role of bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol. 2004;6:1221–8.

    Article  PubMed  CAS  Google Scholar 

  77. Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, et al. Regulation of an atg7-beclin 1 program of autophagic cell death by caspase-8. Science. 2004;304:1500–2.

    Article  PubMed  CAS  Google Scholar 

  78. Smith CM, Chen Y, Sullivan ML, Kochanek PM, Clark RS. Autophagy in acute brain injury: feast, famine, or folly? Neurobiol Dis. 2011;43:52–9.

    Article  PubMed  CAS  Google Scholar 

  79. Yu L, Lenardo MJ, Baehrecke EH. Autophagy and caspases: a new cell death program. Cell Cycle. 2004;3:1124–6.

    PubMed  CAS  Google Scholar 

  80. Jung CH, Ro SH, Cao J, Otto NM, Kim DH. Mtor regulation of autophagy. FEBS Lett. 2010;584:1287–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Chong ZZ, Shang YC, Wang S, Maiese K. A critical kinase cascade in neurological disorders: Pi 3-k, akt, and mtor. Future Neurol. 2012;7:733–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221:3–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Xingyong C, Xicui S, Huanxing S, Jingsong O, Yi H, Xu Z, et al. Upregulation of myeloid cell leukemia-1 potentially modulates beclin-1-dependent autophagy in ischemic stroke in rats. BMC Neurosci. 2013;14:56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Xu F, Li J, Ni W, Shen YW, Zhang XP. Peroxisome proliferator-activated receptor-gamma agonist 15d-prostaglandin j2 mediates neuronal autophagy after cerebral ischemia-reperfusion injury. PLoS One. 2013;8:e55080.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, et al. Tsc2 integrates wnt and energy signals via a coordinated phosphorylation by ampk and gsk3 to regulate cell growth. Cell. 2006;126:955–68.

    Article  PubMed  CAS  Google Scholar 

  86. Poels J, Spasic MR, Callaerts P, Norga KK. Expanding roles for amp-activated protein kinase in neuronal survival and autophagy. Bioessays. 2009;31:944–52.

    Article  PubMed  CAS  Google Scholar 

  87. Li J, McCullough LD. Effects of amp-activated protein kinase in cerebral ischemia. J Cereb Blood Flow Metab. 2010;30:480–92.

    Article  PubMed  CAS  Google Scholar 

  88. Oberstein A, Jeffrey PD, Shi Y. Crystal structure of the bcl-xl-beclin 1 peptide complex: Beclin 1 is a novel bh3-only protein. J Biol Chem. 2007;282:13123–32.

    Article  PubMed  CAS  Google Scholar 

  89. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit beclin 1-dependent autophagy. Cell. 2005;122:927–39.

    Article  PubMed  CAS  Google Scholar 

  90. He C, Levine B. The beclin 1 interactome. Curr Opin Cell Biol. 2010;22:140–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Maiuri MC, Criollo A, Kroemer G. Crosstalk between apoptosis and autophagy within the beclin 1 interactome. EMBO J. 2010;29:515–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Carloni S, Buonocore G, Balduini W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis. 2008;32:329–39.

    Article  PubMed  Google Scholar 

  93. Rami A, Langhagen A, Steiger S. Focal cerebral ischemia induces upregulation of beclin 1 and autophagy-like cell death. Neurobiol Dis. 2008;29:132–41.

    Article  CAS  PubMed  Google Scholar 

  94. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of amp-activated protein kinase and beclin 1 in mediating autophagy. Circ Res. 2007;100:914–22.

    Article  PubMed  CAS  Google Scholar 

  95. Kang R, Zeh HJ, Lotze MT, Tang D. The beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 2011;18:571–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Althaus J, Bernaudin M, Petit E, Toutain J, Touzani O, Rami A. Expression of the gene encoding the pro-apoptotic bnip3 protein and stimulation of hypoxia-inducible factor-1alpha (hif-1alpha) protein following focal cerebral ischemia in rats. Neurochem Int. 2006;48:687–95.

    Article  PubMed  CAS  Google Scholar 

  97. Xin XY, Pan J, Wang XQ, Ma JF, Ding JQ, Yang GY, et al. 2-Methoxyestradiol attenuates autophagy activation after global ischemia. J Can Sci Neurol. 2011;38:631–8.

    Article  Google Scholar 

  98. Cho B, Choi SY, Park OH, Sun W, Geum D. Differential expression of bnip family members of bh3-only proteins during the development and after axotomy in the rat. Mol Cells. 2012;33:605–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. He S, Wang C, Dong H, Xia F, Zhou H, Jiang X, et al. Immune-related gtpase m (irgm1) regulates neuronal autophagy in a mouse model of stroke. Autophagy. 2012;8:1621–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Banasiak KJ, Haddad GG. Hypoxia-induced apoptosis: Effect of hypoxic severity and role of p53 in neuronal cell death. Brain Res. 1998;797:295–304.

    Article  PubMed  CAS  Google Scholar 

  101. Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, et al. Dram, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126:121–34.

    Article  PubMed  CAS  Google Scholar 

  102. Wang Y, Dong XX, Cao Y, Liang ZQ, Han R, Wu JC, et al. P53 induction contributes to excitotoxic neuronal death in rat striatum through apoptotic and autophagic mechanisms. Eur J Neurosci. 2009;30:2258–70.

    Article  PubMed  Google Scholar 

  103. Chen AC, Arany PR, Huang YY, Tomkinson EM, Sharma SK, Kharkwal GB, et al. Low-level laser therapy activates nf-kb via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One. 2011;6:e22453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Li WL, Yu SP, Chen D, Yu SS, Jiang YJ, Genetta T, et al. The regulatory role of nf-kappab in autophagy-like cell death after focal cerebral ischemia in mice. Neuroscience. 2013;244:16–30.

    Article  PubMed  CAS  Google Scholar 

  105. Cui DR, Wang L, Jiang W, Qi AH, Zhou QH, Zhang XL. Propofol prevents cerebral ischemia-triggered autophagy activation and cell death in the rat hippocampus through the nf-kappab/p53 signaling pathway. Neuroscience. 2013;246:117–32.

    Article  PubMed  CAS  Google Scholar 

  106. Lien SC, Chang SF, Lee PL, Wei SY, Chang MD, Chang JY, et al. Mechanical regulation of cancer cell apoptosis and autophagy: roles of bone morphogenetic protein receptor, smad1/5, and p38 mapk. Biochim Biophys Acta. 2013;1833:3124–33.

    Article  PubMed  CAS  Google Scholar 

  107. Wang PR, Wang JS, Zhang C, Song XF, Tian N, Kong LY. Huang-lian-jie-du-decotion induced protective autophagy against the injury of cerebral ischemia/reperfusion via mapk-mtor signaling pathway. J Ethnopharmacol. 2013;149:270–80.

    Article  PubMed  Google Scholar 

  108. Kubota C, Torii S, Hou N, Saito N, Yoshimoto Y, Imai H, et al. Constitutive reactive oxygen species generation from autophagosome/lysosome in neuronal oxidative toxicity. J Biol Chem. 2010;285:667–74.

    Article  PubMed  CAS  Google Scholar 

  109. Mehta SL, Kumari S, Mendelev N, Li PA. Selenium preserves mitochondrial function, stimulates mitochondrial biogenesis, and reduces infarct volume after focal cerebral ischemia. BMC Neurosci. 2012;13:79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Puyal J, Ginet V, Grishchuk Y, Truttmann AC, Clarke PG. Neuronal autophagy as a mediator of life and death: contrasting roles in chronic neurodegenerative and acute neural disorders. Neuroscientist. 2012;18:224–36.

    Article  PubMed  CAS  Google Scholar 

  111. Kulbe JR, Mulcahy Levy JM, Coultrap SJ, Thorburn A, Bayer KU. Excitotoxic glutamate insults block autophagic flux in hippocampal neurons. Brain Res. 2014;1542:12–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, et al. Impairment of starvation-induced and constitutive autophagy in atg7-deficient mice. J Cell Biol. 2005;169:425–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441:880–4.

    Article  PubMed  CAS  Google Scholar 

  114. Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, et al. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol. 2006;169:566–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol. 2008;172:454–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, et al. Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy. 2008;4:762–9.

    Article  PubMed  CAS  Google Scholar 

  117. Carloni S, Girelli S, Scopa C, Buonocore G, Longini M, Balduini W. Activation of autophagy and akt/creb signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy. 2010;6:366–77.

    Article  PubMed  CAS  Google Scholar 

  118. Wang P, Guan YF, Du H, Zhai QW, Su DF, Miao CY. Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy. 2012;8:77–87.

    Article  PubMed  CAS  Google Scholar 

  119. Kang C, Avery L. To be or not to be, the level of autophagy is the question: dual roles of autophagy in the survival response to starvation. Autophagy. 2008;4:82–4.

    Article  PubMed  Google Scholar 

  120. Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev. 2010;90:1383–435.

    Article  PubMed  CAS  Google Scholar 

  121. Sheng R, Zhang LS, Han R, Liu XQ, Gao B, Qin ZH. Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning. Autophagy. 2010;6:482–94.

    Article  PubMed  CAS  Google Scholar 

  122. Yan W, Zhang H, Bai X, Lu Y, Dong H, Xiong L. Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Brain Res. 2011;1402:109–21.

    Article  PubMed  CAS  Google Scholar 

  123. Puyal J, Vaslin A, Mottier V, Clarke PG. Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann Neurol. 2009;66:378–89.

    Article  CAS  PubMed  Google Scholar 

  124. Gao L, Jiang T, Guo J, Liu Y, Cui G, Gu L, et al. Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats. PLoS One. 2012;7:e46092.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Komatsu M, Ueno T, Waguri S, Uchiyama Y, Kominami E, Tanaka K. Constitutive autophagy: vital role in clearance of unfavorable proteins in neurons. Cell Death Differ. 2007;14:887–94.

    PubMed  CAS  Google Scholar 

  126. Xu F, Gu JH, Qin ZH. Neuronal autophagy in cerebral ischemia. Neurosci Bull. 2012;28:658–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Luo T, Park Y, Sun X, Liu C, Hu B. Protein misfolding, aggregation, and autophagy after brain ischemia. Transl Stroke Res. 2013;4:581–8.

    Article  PubMed  CAS  Google Scholar 

  128. Liu C, Gao Y, Barrett J, Hu B. Autophagy and protein aggregation after brain ischemia. J Neurochem. 2010;115:68–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Puyal J, Clarke PG. Targeting autophagy to prevent neonatal stroke damage. Autophagy. 2009;5:1060–1.

    Article  PubMed  Google Scholar 

  130. Long JS, Ryan KM. New frontiers in promoting tumour cell death: targeting apoptosis, necroptosis and autophagy. Oncogene. 2012;31:5045–60.

    Article  PubMed  CAS  Google Scholar 

  131. Zhivotovsky B, Orrenius S. Cell death mechanisms: cross-talk and role in disease. Exp Cell Res. 2010;316:1374–83.

    Article  PubMed  CAS  Google Scholar 

  132. Amaravadi RK, Thompson CB. The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Cancer Res. 2007;13:7271–9.

    Article  PubMed  CAS  Google Scholar 

  133. Festjens N, Vanden Berghe T, Vandenabeele P. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta. 2006;1757:1371–87.

    Article  PubMed  CAS  Google Scholar 

  134. Wang N, Pan W, Zhu M, Zhang M, Hao X, Liang G, et al. Fangchinoline induces autophagic cell death via p53/sestrin2/ampk signalling in human hepatocellular carcinoma cells. Br J Pharmacol. 2011;164:731–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Vanden Berghe T, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N, et al. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ. 2010;17:922–30.

    Article  CAS  Google Scholar 

  136. Wallach D, Kang TB, Kovalenko A. Concepts of tissue injury and cell death in inflammation: a historical perspective. Nat Rev Immunol. 2014;14:51–9.

    Article  PubMed  CAS  Google Scholar 

  137. Li J, Yuan J. Caspases in apoptosis and beyond. Oncogene. 2008;27:6194–206.

    Article  PubMed  CAS  Google Scholar 

  138. Jeong SJ, Dasgupta A, Jung KJ, Um JH, Burke A, Park HU, et al. Pi3k/akt inhibition induces caspase-dependent apoptosis in htlv-1-transformed cells. Virology. 2008;370:264–72.

    Article  PubMed  CAS  Google Scholar 

  139. Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron M. Pi3k/akt signalling pathway and cancer. Cancer Treat Rev. 2004;30:193–204.

    Article  PubMed  CAS  Google Scholar 

  140. Zhang X, Yan H, Yuan Y, Gao J, Shen Z, Cheng Y, et al. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy. 2013;9:1321–33.

    Article  PubMed  CAS  Google Scholar 

  141. Zhang ZB, Li ZG. Cathepsin b and phospo-jnk in relation to ongoing apoptosis after transient focal cerebral ischemia in the rat. Neurochem Res. 2012;37:948–57.

    Article  PubMed  CAS  Google Scholar 

  142. Canu N, Tufi R, Serafino AL, Amadoro G, Ciotti MT, Calissano P. Role of the autophagic-lysosomal system on low potassium-induced apoptosis in cultured cerebellar granule cells. J Neurochem. 2005;92:1228–42.

    Article  PubMed  CAS  Google Scholar 

  143. Grishchuk Y, Ginet V, Truttmann AC, Clarke PG, Puyal J. Beclin 1-independent autophagy contributes to apoptosis in cortical neurons. Autophagy. 2011;7:1115–31.

    Article  PubMed  CAS  Google Scholar 

  144. Heitz S, Grant NJ, Leschiera R, Haeberle AM, Demais V, Bombarde G, et al. Autophagy and cell death of purkinje cells overexpressing doppel in ngsk prnp-deficient mice. Brain Pathol. 2010;20:119–32.

    Article  PubMed  Google Scholar 

  145. Radoshevich L, Murrow L, Chen N, Fernandez E, Roy S, Fung C, et al. Atg12 conjugation to atg3 regulates mitochondrial homeostasis and cell death. Cell. 2010;142:590–600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. He G, Xu W, Tong L, Li S, Su S, Tan X, et al. Gadd45b prevents autophagy and apoptosis against rat cerebral neuron oxygen-glucose deprivation/reperfusion injury. Apoptosis. 2016;21:390–403.

    Article  PubMed  CAS  Google Scholar 

  147. Qi Z, Dong W, Shi W, Wang R, Zhang C, Zhao Y, et al. Bcl-2 phosphorylation triggers autophagy switch and reduces mitochondrial damage in limb remote ischemic conditioned rats after ischemic stroke. Transl Stroke Res. 2015;6:198–206.

    Article  PubMed  CAS  Google Scholar 

  148. Delgado M, Tesfaigzi Y. Bh3-only proteins, bmf and bim, in autophagy. Cell Cycle. 2013;12:3453–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Luo S, Rubinsztein DC. Apoptosis blocks beclin 1-dependent autophagosome synthesis: an effect rescued by bcl-xl. Cell Death Differ. 2010;17:268–77.

    Article  PubMed  CAS  Google Scholar 

  150. Luo S, Rubinsztein DC. Bcl2l11/bim: a novel molecular link between autophagy and apoptosis. Autophagy. 2013;9:104–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Balduini W, Carloni S, Buonocore G. Autophagy in hypoxia-ischemia induced brain injury: evidence and speculations. Autophagy. 2009;5:221–3.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benyan Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wei, R., Xu, Y., Zhang, J., Luo, B. (2018). Programmed Cell Death in CIRI. In: Jiang, W., Yu, W., Qu, Y., Shi, Z., Luo, B., Zhang, J. (eds) Cerebral Ischemic Reperfusion Injuries (CIRI). Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-90194-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90194-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90193-0

  • Online ISBN: 978-3-319-90194-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics