Advertisement

Machine Learning the TV Consumption: A Basis for a Recommendation System

  • Bernardo CardosoEmail author
  • Jorge Abreu
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 813)

Abstract

With the continuous growth of channels and content available in a typical interactive TV service, viewers have become increasingly frustrated, struggling to select which programs to watch. Content recommendation systems have been pointed out as a possible tool to mitigate this problem, especially when applied to on-demand content. However, in linear content, its success has been limited, either due to the specificities of this type of content or due to the little integration with normal consumption behaviors. Despite that, recommendation algorithms have undergone a set of enhancements in order to improve their effectiveness, particularly when applied to the world of linear content. These improvements, focused on the use of the visualization context, paired with machine learning techniques, can represent a big advantage in the quality of the suggestions to be proposed to the viewer. The area of user experience (UX) evaluation, in interactive TV, has been also a subject of ongoing research, extending beyond the traditional usability evaluation, pursuing other dimensions of analysis such as identification, emotion, stimulation, and aesthetics, as well as distinct moments of evaluation. This paper presents the proposal for the development of a recommendation system, based on the viewing context, and a methodology for evaluating the way this system influences the UX of the viewers.

Keywords

TV UX evaluation Recommendations Visualization context 

References

  1. 1.
    Abreu, J., Nogueira, J., Becker, V., Cardoso, B.: Survey of Catch-up TV and other time-shift services: a comprehensive analysis and taxonomy of linear and nonlinear television. Telecommun. Syst. 64, 57–74 (2017).  https://doi.org/10.1007/s11235-016-0157-3CrossRefGoogle Scholar
  2. 2.
    Schwartz, B.: The Paradox of Choice: Why More is Less. HarperCollins, New York City (2004)Google Scholar
  3. 3.
    Vanattenhoven, J., Geerts, D.: Contextual aspects of typical viewing situations: a new perspective for recommending television and video content. Pers. Ubiquit. Comput. 19, 761–779 (2015).  https://doi.org/10.1007/s00779-015-0861-0CrossRefGoogle Scholar
  4. 4.
    Bernhaupt, R., Obrist, M., Weiss, A., et al.: Trends in the living room and beyond: results from ethnographic studies using creative and playful probing. Comput. Entertain. 6, 5:1–5:23 (2008).  https://doi.org/10.1145/1350843.1350848CrossRefGoogle Scholar
  5. 5.
    Digitalsmiths: Q4 2015 Video Trends Report - Consumer Behavior Across Pay-TV, VOD, PPV, OTT, TVE, Connected Devices, and Content Discovery (2015)Google Scholar
  6. 6.
    Turrin, R., Condorelli, A., Cremonesi, P., Pagano, R.: Time-based TV programs prediction. In: 1st Workshop on Recommender Systems for Television and Online Video at ACM RecSys (2014)Google Scholar
  7. 7.
    Churchill, E.F.: Putting the person back into personalization. Interactions 20, 12–15 (2013).  https://doi.org/10.1145/2504847CrossRefGoogle Scholar
  8. 8.
    Aharon, M., Hillel, E., Kagian, A., Lempel, R., Makabee, H., Nissim, R.: Watch-it-next: a contextual TV recommendation system. In: Bifet, A., May, M., Zadrozny, B., Gavalda, R., Pedreschi, D., Bonchi, F., Cardoso, J., Spiliopoulou, M. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9286, pp. 180–195. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23461-8_12CrossRefGoogle Scholar
  9. 9.
    Gonçalves, D., Costa, M., Couto, F.M.: A flexible recommendation system for cable TV. In: 3rd Workshop on Recommendation Systems for Television and online Video, RecSysTV 2016 (2016)Google Scholar
  10. 10.
    Portugal, I., Alencar, P., Cowan, D.: The use of machine learning algorithms in recommender systems: a systematic review. Expert Syst. Appl. 97, 205–227 (2018).  https://doi.org/10.1016/j.eswa.2017.12.020CrossRefGoogle Scholar
  11. 11.
    Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 191–226. Springer, Boston (2015).  https://doi.org/10.1007/978-1-4899-7637-6_6CrossRefzbMATHGoogle Scholar
  12. 12.
    Zhang, T., Iyengar, V.S.: Recommender systems using linear classifiers. J. Mach. Learn. Res. 2, 313–334 (2002)zbMATHGoogle Scholar
  13. 13.
    Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986).  https://doi.org/10.1023/A:1022643204877CrossRefGoogle Scholar
  14. 14.
    Ericsson AB Mediaroom—Ericsson Media Solutions. https://mediasolutions.ericsson.com/products/mediaroom/. Accessed 8 Jan 2018
  15. 15.
    Zibriczky, D., Petres, Z., Waszlavik, M., Tikk, D.: EPG content recommendation in large scale: a case study on interactive TV platform. In: 2013 12th International Conference on Machine Learning and Applications, pp. 315–320 (2013)Google Scholar
  16. 16.
    Buczak, A.L., Zimmerman, J., Kurapati, K.: Personalization: improving ease-of-use, trust and accuracy of a TV show recommender. In: Proceedings of AH 2002 Workshop on Personalization in Future TV (2002)Google Scholar
  17. 17.
    Chang, N., Irvan, M., Terano, T.: A TV program recommender framework. Proc. Comput. Sci. 22, 561–570 (2013).  https://doi.org/10.1016/j.procs.2013.09.136CrossRefGoogle Scholar
  18. 18.
    Swearingen, K., Sinha, R.: Interaction design for recommender systems. Des. Interact. Syst. 6, 312–334 (2002)Google Scholar
  19. 19.
    International Organization for Standardization: ISO 9241-210: ergonomics of human–system interaction - human-centred design for interactive systems. Int. Organ. Stand. 2010, 32 (2010).  https://doi.org/10.1039/c0dt90114hCrossRefGoogle Scholar
  20. 20.
    Jenner, M.: Binge-watching: video-on-demand, quality TV and mainstreaming fandom. Int. J. Cult. Stud. 20, 304–320 (2017).  https://doi.org/10.1177/1367877915606485CrossRefGoogle Scholar
  21. 21.
    Abreu, J., Almeida, P., Silva, T.: A UX evaluation approach for second-screen applications. Commun. Comput. Inf. Sci. 605, 105–120 (2016).  https://doi.org/10.1007/978-3-319-38907-3_9CrossRefGoogle Scholar
  22. 22.
    Bernhaupt, R., Pirker, M.: Evaluating user experience for interactive television: towards the development of a domain-specific user experience questionnaire. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013. LNCS, vol. 8118, pp. 642–659. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40480-1_45CrossRefGoogle Scholar
  23. 23.
    Drouet, D., Bernhaupt, R.: User experience evaluation methods: lessons learned from an interactive TV case-study. In: Bogdan, C., et al. (eds.) HCSE/HESSD -2016. LNCS, vol. 9856, pp. 351–358. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44902-9_22CrossRefGoogle Scholar
  24. 24.
    Brooke, J.: SUS-a quick and dirty usability scale. Usability Eval. Ind. 189, 4–7 (1996)Google Scholar
  25. 25.
    Hassenzahl, M., Burmester, M., Koller, F.: AttrakDiff: Ein Fragebogen zur Messung wahrgenommener hedonischer und pragmatischer Qualität. In: Szwillus, G., Ziegler, J. (eds.) 2003 Interaktion Bewegung Mensch & Computer, pp. 187–196. Vieweg + Teubner Verlag, Wiesbaden (2003)Google Scholar
  26. 26.
    Hassenzahl, M.: The interplay of beauty, goodness, and usability in interactive products. Hum.-Comput. Interact. 19, 319–349 (2008).  https://doi.org/10.1207/s15327051hci1904_2CrossRefGoogle Scholar
  27. 27.
    Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25, 49–59 (1994).  https://doi.org/10.1016/0005-7916(94)90063-9CrossRefGoogle Scholar
  28. 28.
    Roto, V., Law, E., Vermeeren, A., Hoonhout, J.: User experience white paper. Bringing clarity to concept user experience, pp. 1–12 (2011)Google Scholar
  29. 29.
    Ferraz de Abreu, J., Almeida, P., Beça, P.: InApp questions – an approach for contextual evaluation of applications. In: Abásolo, M.J., Almeida, P., Pina Amargós, J. (eds.) jAUTI 2016. CCIS, vol. 689, pp. 163–175. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63321-3_12CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of AveiroAveiroPortugal

Personalised recommendations