Skip to main content

Contact Modeling in the Discrete Element Method

  • Chapter
  • First Online:

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 585))

Abstract

The discrete element method (DEM) is a wide family of numerical methods for discrete and discontinuous modelling of materials and systems which can be represented by a large collection of particles (discrete elements). The DEM assumes that the discrete elements interact with one another by contact forces. This chapter presents basic aspects of contact modeling in the DEM. The main assumptions, theoretical formulation and numerical algorithm of the DEM are presented. In this work, the DEM formulation employing spherical particles and the soft-contact approach is considered. Basic contact models for the particle interaction are reviewed. Elementary contact mechanisms, including elasticity, plasticity, damping, friction and cohesion are discussed. Selected contact models combining these effects are described. Their performance in modelling single dynamic or quasi-static contact events is analysed. The analysis is focused on the evolution of contact forces during single collisions. Although the force-type interaction is mainly discussed, the moment-type interaction is also introduced. Formulation of the DEM contact taking into account thermal effects as well as thermomechanical coupling finishes this review.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In the next part of this section indices denoting the elements will be omitted.

References

  • J. Argyris. An excursion into large rotations. Comput. Meth. Appl. Mech. Eng., 32: 85–155, 1982.

    Article  MathSciNet  Google Scholar 

  • J.P. Bardet and J. Proubet. A numerical investigation of the structure of persistent shear bands in granular media. Geotechnique, 41: 599–613, 1991.

    Article  Google Scholar 

  • T. Belytschko, P. Smolinski, and W.K. Liu. Stability of multi-time step partitioned integrators for the first order finite element systems. Comput. Meth. Appl. Mech. Eng., 49: 281–297, 1985.

    Article  Google Scholar 

  • Y.A. Cengel. Heat and Mass Transfer: A Practical Approach. McGraw-Hill, Third Edition edition, 2007.

    Google Scholar 

  • M.G. Cooper, B.B. Mikic, and M.M. Yovanovich. Thermal contact conductance. Int. J. Heat Mass Transfer, 12: 279–300, 1969.

    Article  Google Scholar 

  • P.A. Cundall. A Computer Model for Simulating Progressive Large Scale Movements in Blocky Rock Systems. In Proc. Int. Symp. Rock Fracture, ISRM, pages 2–8, Nancy, France, 1971.

    Google Scholar 

  • P.A. Cundall. Distinct element models of rock and soil structure. In Analytical and computational models in engineering and rock mechanics. Allen&Unwin, London, 1987.

    Google Scholar 

  • P.A. Cundall. Formulation of a Three Dimensional Distinct Element Model — Part I. A Scheme to Detect and Represent Contacts in a System of Many Polyhedral Blocks. Int. J. Rock Mech., Min. Sci. & Geomech. Abstr., 25 (3): 107–116, 1988.

    Google Scholar 

  • P.A. Cundall and O.D.L. Strack. A discrete numerical method for granular assemblies. Geotechnique, 29: 47–65, 1979.

    Article  Google Scholar 

  • A. Curnier. Unilateral contact. mechanical modelling. In P. Wriggers and P. Panagiotopoulos, editors, New Developments in Contact Problems, pages 1–54. Springer, 1999.

    MATH  Google Scholar 

  • F. Fleissner, T. Gaugele, and P. Eberhard. Applications of the discrete element method in mechanical engineering. Multibody Syst. Dyn., 18: 81–94, 2007.

    Article  MathSciNet  Google Scholar 

  • P.K. Haff and B.T. Werner. Collisional interaction of a small number of confined inelastic grains. In T. Ariman and T. N. Veziroglu, editors, Colloidal and Interfacial Phenomena, pages 483–501. Hemisphere Publishing, 1987.

    Google Scholar 

  • S. Hentz, L. Daudeville, and F.V. Donzé. Identification and validation of a discrete element model for concrete. ASCE J. Eng. Mech., 130: 709–719, 2004.

    Article  Google Scholar 

  • H. Hertz. Über die Berührung fester elastischer Körper (On the contact of elastic bodies). J. Reine Angewandte Math., 94: 156–171, 1882.

    MATH  Google Scholar 

  • D.C. Hong and J.A. McLennan. Molecular dynamics simulations of hard sphere granular particles. Phys. A: Stat. Mech. Applicat., 187: 159–171, 1992.

    Article  Google Scholar 

  • T.J.R. Hughes. The Finite Element Method. Linear Static and Dynamic Analysis. Prentice-Hall, 1987.

    MATH  Google Scholar 

  • K.H. Hunt and F.R.E. Crossley. Coefficient of restitution interpreted as damping in vibroimpact. Journal of Applied Mechanics, 42: 440, 1975.

    Article  Google Scholar 

  • R. Jankowski. Analytical expression between the impact damping ratio and the coefficient of restitution in the non-linear viscoelastic model of structural pounding. Earthquake Engng Struct. Dyn., 35: 517–524, 2006.

    Article  Google Scholar 

  • K.J. Johnson. Contact Mechanics. Cambridge University Press, 1985.

    Google Scholar 

  • G.R. Joldes, A. Wittek, and K. Miller. An adaptive Dynamic Relaxation method for solving nonlinear finite element problems. Application to brain shift estimation. Int. J. Numer. Method Biomed. Eng., 27: 173–185, 2011.

    MATH  Google Scholar 

  • A. Klarbring. Contact, friction, discrete mechanical structures and mathematical programming. In P. Wriggers and P. Panagiotopoulos, editors, New Developments in Contact Problems, pages 56–100. Springer, 1999.

    MATH  Google Scholar 

  • H. Kruggel-Emden, S. Wirtz, and V. Scherer. A study on tangential force laws applicable to the discrete element method (DEM) for materials with viscoelastic or plastic behavior. Chemical Engineering Science, 63: 1523–1541, 2008.

    Article  Google Scholar 

  • P.-L. Larsson, S. Biwa, and B. Storåkers. Analysis of cold and hot isostatic compaction of spherical particles. Acta mater., 44: 3655–3666, 1996.

    Article  Google Scholar 

  • W. Leclerc, H. Haddad, and M. Guessasma. On a discrete element method to simulate thermal-induced damage in 2d composite materials. Computers and Structures, 196: 277–291, 2018.

    Article  Google Scholar 

  • J. Lee. Density waves in the flows of granular media. Phys. Rev. E, 49 (1): 281, 1994.

    Article  Google Scholar 

  • Y.-Y. Lin and C.Y. Hui. Mechanics of contact and adhesion between viscoelastic spheres: An analysis of hysteresis during loading and unloading. Journal of Polymer Science: Part B: Polymer Physics, 40: 772–793, 2002.

    Article  Google Scholar 

  • F.P. Di Maio and A. Di Renzo. Modelling particle contacts in distinct element simulations. Linear and non-linear approach. Chemical Engineering Research and Design, 83(A11): 1287–1297, 2005.

    Google Scholar 

  • I. Marczewska, J. Rojek, and R. Kačianauskas. Investigation of the effective elastic parameters in the discrete element model of granular material by the triaxial compression test. Archives of Civil and Mechanical Engineering, 16: 64–75, 2016.

    Article  Google Scholar 

  • C.L. Martin, D. Bouvard, and S. Shima. Study of particle rearrangement during powder compaction by the Discrete Element Method. J. Mech. Phys. Solids, 51: 667–693, 2003.

    Article  Google Scholar 

  • R.D. Mindlin and H. Deresiewicz. Elastic spheres in contact under varying oblique forces. ASME Journal of Applied Mechanics, 20: 327–344, 1953.

    MathSciNet  MATH  Google Scholar 

  • J.J. Moreau. Some numerical methods in multibody dynamics: application to granularmaterials. European Journal of Mechanics A/Solids, 13: 93–114, 1994.

    MathSciNet  MATH  Google Scholar 

  • M. Nagurka and S. Huang. A mass-spring-damper model of a bouncing ball. Int. J. Engng Ed., 22: 393–401, 2006.

    Google Scholar 

  • H.A. Navarro and M.P. de Souza Braun. Linear and nonlinear Hertizian contact models for materials in multibody dynamics. In Proceedings of the 22nd Int. Congress of Mechanical Engineering (COBEM 2013) November 3–7, 2013, Ribeirao Preto, SP, Brazil, pages 159–180, 2013.

    Google Scholar 

  • E. Olsson and P.-L. Larsson. On the effect of particle size distribution in cold powder compaction. Journal of Applied Mechanics, 79: 1–8, 2012.

    Article  Google Scholar 

  • J.P. Plassiard, N. Belheine, and F.V. Donze. A spherical discrete element model: calibration procedure and incremental response. Granular Matter, 11: 293–306, 2009.

    Article  Google Scholar 

  • D.O. Potyondy and P.A. Cundall. A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci., 41: 1329–1364, 2004.

    Article  Google Scholar 

  • M. Raous. Quasistatic signorini problem with Coulomb friction and coupling to adhesion. In P. Wriggers and P. Panagiotopoulos, editors, New Developments in Contact Problems, pages 101–178. Springer, 1999.

    Google Scholar 

  • A. Di Renzo and F.P. Di Maio. Comparison of contact–force models for the simulation of collisions in DEM-based granular flow codes. Chemical Engineering Science, 59: 525–541, 2004.

    Article  Google Scholar 

  • D.C. Richardson, K.J. Walsh, N. Murdoch, and P. Michel. Numerical simulations of granular dynamics: I. Hard-sphere discrete element method and tests. Icarus, 212: 427–437, 2011.

    Article  Google Scholar 

  • J. Rojek. Discrete element thermomechanical modelling of rock cutting with valuation of tool wear. Computational Particle Mechanics, 1: 71–84, 2014.

    Article  Google Scholar 

  • J. Rojek, E. O\(\tilde{\text{n}}\)ate, F. Zarate, and J. Miquel. Modelling of rock, soil and granular materials using spherical elements. In 2nd European Conference on Computational Mechanics ECCM-2001, Cracow, 26-29 June, 2001.

    Google Scholar 

  • J. Rojek, F. Zarate, C. Agelet de Saracibar, Ch. Gilbourne, and P. Verdot. Discrete element modelling and simulation of sand mould manufacture for the lost foam process. Int. J. Num. Meth. Eng., 62: 1421–1441, 2005.

    Article  Google Scholar 

  • J. Rojek, E. Onate, C. Labra, and H. Kargl. Discrete element simulation of rock cutting. International Journal of Rock Mechanics and Mining Sciences, 48: 996–1010, 2011.

    Article  Google Scholar 

  • J. Rojek, C. Labra, O. Su, and E. O\(\tilde{\text{ n }}\)ate. Comparative study of different discrete element models and evaluation of equivalent micromechanical parameters. Int. J. Solids and Structures, 49: 1497–1517, 2012.

    Article  Google Scholar 

  • J. Rojek, G.F. Karlis, L.J. Malinowski, and G. Beer. Setting up virgin stress conditions in discrete element models. Computers and Geotechnics, 48: 228–248, 2013.

    Article  Google Scholar 

  • L. Rothenburg and R. J. Bathurst. Micromechanical features of granular materials with planar elliptical particles. Geotechnique, 42 (1): 79–95, 1992.

    Article  Google Scholar 

  • R. Senapati and J. Zhang. Identifying fracture origin in ceramics by combination of nondestructive testing and discrete element analysis. In AIP Conference Proceedings, volume 1211, pages 1445–1451, 2010.

    Article  Google Scholar 

  • M. Shillor, M. Sofonea, and J.J. Telega. Models and Analysis of Quasistatic Contact. Variational Methods. Lect. Notes Phys. 655, Springer, 2004.

    Google Scholar 

  • B. Storåkers, S. Biwa, and P.-L. Larsson. Similarity analysis of inelastic contact. Int. J. Solids and Structures, 34: 3061–3083, 1997.

    Article  MathSciNet  Google Scholar 

  • B. Storåkers, N.A. Fleck, and R.M. McMeeking. The viscoplastic compaction of composite powders. Journal of the Mechanics and Physics of Solids, 47: 785–815, 1999.

    Article  Google Scholar 

  • H. Tao, W. Zhong, and B. Jin. Flow behavior of non-spherical particle flowing in hopper. Frontiers in Energy, 3: 315–321, 2014.

    Article  Google Scholar 

  • L.M. Taylor and D.S. Preece. Simulation of blasting induced rock motion. Eng. Comput., 9 (2): 243–252, 1992.

    Article  Google Scholar 

  • C. Thornton. Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres. J. Appl. Mech, 64: 383–386, 1997.

    Article  Google Scholar 

  • Y. Tsuji, T. Tanaka, and T. Ishida. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technology, 71: 239–250, 1992.

    Article  Google Scholar 

  • L. Vu-Quoc, X. Zhang, and L. Lesburg. A normal force-displacement model for contacting spheres accounting for plastic deformation: Force-driven formulation. Journal of Applied Mechanics, 67: 363–371, 2000.

    Article  Google Scholar 

  • O.R. Walton. Explicit particle dynamics for granular materials. In Proc. 4th Int. Conf. on Numerical Methods in Geomechanics, pages 1261–1268, Eldmonton, Canada, 1982.

    Google Scholar 

  • O.R. Walton. Particle dynamics calculations of shear flow. In J.T. Jenkins and M. Satake, editors, Mechanics of Granular Materials: New Models and Constitutive Relations, pages 327–338. Elsevier, 1983.

    Chapter  Google Scholar 

  • O.R. Walton and R.L. Braun. Stress calculations for assemblies of inelastic spheres in uniform shear. Aeta Mechanica, 63: 73–86, 1986.

    Article  Google Scholar 

  • Y. Wang, F. Alonso-Marroquin, and W.W. Guo. Rolling and sliding in 3-D discrete element models. Particuology, 23: 49–55, 2015.

    Article  Google Scholar 

  • T. Wanne. Bonded-particle modeling of thermally induced damage in rock. PhD thesis, University of Toronto, 2009.

    Google Scholar 

  • L. Widuliński, J. Kozicki, and J. Tejchman. Numerical Simulations of Triaxial Test with Sand Using DEM. Archives of Hydro-Engineering and Environmental Mechanics, 56: 149–171, 2009.

    Google Scholar 

  • J.R. Williams, G. Hocking, and G.G.W. Mustoe. The theoretical basis of the discrete element method. In NUMETA 1985, Numerical Methods of Engineering, Theory and Applications. A.A. Balkema, Rotterdam, 1985.

    Google Scholar 

  • T. Wu, I. Temizer, and P. Wriggers. Computational thermal homogenization of concrete. Cement and Concrete Composites, 35: 59–70, 2013.

    Article  Google Scholar 

  • E. Zdancevičius, R. Kačianauskas, and D. Zabulionis. Improvement of viscoelastic damping for the Hertz contact of particles due to impact velocity. Procedia Engineering, 172: 1286–1290, 2017.

    Article  Google Scholar 

  • H.W. Zhang, Q. Zhou, H.L. Xing, and H. Muhlhaus. A DEM study on the effective thermal conductivity of granular assemblies. Powder Technology, 205: 172–183, 2011.

    Article  Google Scholar 

  • L.F.C. Zonetti, A.S.S. Camargo, J. Sartori, D.F. de Sousa, and L.A.O. Nunes. A demonstration of dry and viscous damping of an oscillating pendulum. Eur. J. Phys., 20: 85–88, 1999.

    Article  Google Scholar 

  • A. Zubelewicz and Z. Mroz. Numerical simulation of rock burst processes treated as problems of dynamic instability. Rock Mechanics and Rock Engineering, 16: 253–274, 1983.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Mr. Nikhil Madan for performing simulations and preparing the plots for the numerical examples included in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Rojek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rojek, J. (2018). Contact Modeling in the Discrete Element Method. In: Popp, A., Wriggers, P. (eds) Contact Modeling for Solids and Particles. CISM International Centre for Mechanical Sciences, vol 585. Springer, Cham. https://doi.org/10.1007/978-3-319-90155-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90155-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90154-1

  • Online ISBN: 978-3-319-90155-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics